| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsat0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochsat0.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochsat0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochsat0.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
dochsat0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 6 |
|
dochsat0.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 7 |
|
dochsat0.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 8 |
|
dochsat0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
dochsat0.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 10 |
1 2 3 5 6 7 4 8 9
|
dochkrsat |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |
| 11 |
10
|
biimpd |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |
| 12 |
11
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = { 0 } ) ) |
| 13 |
12
|
orrd |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ∨ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) = { 0 } ) ) |