| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochkrsm.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | dochkrsm.i | ⊢ 𝐼  =  ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | dochkrsm.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | dochkrsm.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | dochkrsm.p | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 6 |  | dochkrsm.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 7 |  | dochkrsm.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 8 |  | dochkrsm.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | dochkrsm.x | ⊢ ( 𝜑  →  𝑋  ∈  ran  𝐼 ) | 
						
							| 10 |  | dochkrsm.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 11 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 12 | 8 | adantr | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 | 9 | adantr | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 ) )  →  𝑋  ∈  ran  𝐼 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 ) ) | 
						
							| 15 | 1 2 4 5 11 12 13 14 | dihsmatrn | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 ) )  →  ( 𝑋  ⊕  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ∈  ran  𝐼 ) | 
						
							| 16 |  | oveq2 | ⊢ ( (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  =  { ( 0g ‘ 𝑈 ) }  →  ( 𝑋  ⊕  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  ( 𝑋  ⊕  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 17 | 1 4 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 19 | 1 4 2 18 | dihrnlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑋  ∈  ran  𝐼 )  →  𝑋  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 20 | 8 9 19 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 21 | 18 | lsssubg | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  ( LSubSp ‘ 𝑈 ) )  →  𝑋  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 22 | 17 20 21 | syl2anc | ⊢ ( 𝜑  →  𝑋  ∈  ( SubGrp ‘ 𝑈 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 24 | 23 5 | lsm01 | ⊢ ( 𝑋  ∈  ( SubGrp ‘ 𝑈 )  →  ( 𝑋  ⊕  { ( 0g ‘ 𝑈 ) } )  =  𝑋 ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝜑  →  ( 𝑋  ⊕  { ( 0g ‘ 𝑈 ) } )  =  𝑋 ) | 
						
							| 26 | 16 25 | sylan9eqr | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  =  { ( 0g ‘ 𝑈 ) } )  →  ( 𝑋  ⊕  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  =  𝑋 ) | 
						
							| 27 | 9 | adantr | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  =  { ( 0g ‘ 𝑈 ) } )  →  𝑋  ∈  ran  𝐼 ) | 
						
							| 28 | 26 27 | eqeltrd | ⊢ ( ( 𝜑  ∧  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  =  { ( 0g ‘ 𝑈 ) } )  →  ( 𝑋  ⊕  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ∈  ran  𝐼 ) | 
						
							| 29 | 1 3 4 23 11 6 7 8 10 | dochsat0 | ⊢ ( 𝜑  →  ( (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  ∈  ( LSAtoms ‘ 𝑈 )  ∨  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  =  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 30 | 15 28 29 | mpjaodan | ⊢ ( 𝜑  →  ( 𝑋  ⊕  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  ∈  ran  𝐼 ) |