Step |
Hyp |
Ref |
Expression |
1 |
|
dochkrsat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochkrsat.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochkrsat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochkrsat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
dochkrsat.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
dochkrsat.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
dochkrsat.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
dochkrsat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dochkrsat.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
12 |
1 2 3 10 11 5 6 8 9
|
dochkrshp |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ ( LSHyp ‘ 𝑈 ) ) ) |
13 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
10 5 6 13 9
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) |
15 |
1 2 3 10 7 8 14
|
dochn0nv |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ) ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
17 |
1 3 10 16 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
18 |
8 14 17
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
19 |
1 2 3 16 4 11 8 18
|
dochsatshpb |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ) ∈ ( LSHyp ‘ 𝑈 ) ) ) |
20 |
12 15 19
|
3bitr4d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ≠ { 0 } ↔ ( ⊥ ‘ ( 𝐿 ‘ 𝐺 ) ) ∈ 𝐴 ) ) |