Metamath Proof Explorer


Theorem dochkrsat

Description: The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses dochkrsat.h 𝐻 = ( LHyp ‘ 𝐾 )
dochkrsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochkrsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochkrsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochkrsat.f 𝐹 = ( LFnl ‘ 𝑈 )
dochkrsat.l 𝐿 = ( LKer ‘ 𝑈 )
dochkrsat.z 0 = ( 0g𝑈 )
dochkrsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochkrsat.g ( 𝜑𝐺𝐹 )
Assertion dochkrsat ( 𝜑 → ( ( ‘ ( 𝐿𝐺 ) ) ≠ { 0 } ↔ ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dochkrsat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochkrsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochkrsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochkrsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 dochkrsat.f 𝐹 = ( LFnl ‘ 𝑈 )
6 dochkrsat.l 𝐿 = ( LKer ‘ 𝑈 )
7 dochkrsat.z 0 = ( 0g𝑈 )
8 dochkrsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dochkrsat.g ( 𝜑𝐺𝐹 )
10 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
11 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
12 1 2 3 10 11 5 6 8 9 dochkrshp ( 𝜑 → ( ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ ( LSHyp ‘ 𝑈 ) ) )
13 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 10 5 6 13 9 lkrssv ( 𝜑 → ( 𝐿𝐺 ) ⊆ ( Base ‘ 𝑈 ) )
15 1 2 3 10 7 8 14 dochn0nv ( 𝜑 → ( ( ‘ ( 𝐿𝐺 ) ) ≠ { 0 } ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ≠ ( Base ‘ 𝑈 ) ) )
16 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
17 1 3 10 16 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐿𝐺 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
18 8 14 17 syl2anc ( 𝜑 → ( ‘ ( 𝐿𝐺 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
19 1 2 3 16 4 11 8 18 dochsatshpb ( 𝜑 → ( ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ↔ ( ‘ ( ‘ ( 𝐿𝐺 ) ) ) ∈ ( LSHyp ‘ 𝑈 ) ) )
20 12 15 19 3bitr4d ( 𝜑 → ( ( ‘ ( 𝐿𝐺 ) ) ≠ { 0 } ↔ ( ‘ ( 𝐿𝐺 ) ) ∈ 𝐴 ) )