Metamath Proof Explorer


Theorem dochkrsat

Description: The orthocomplement of a kernel is an atom iff it is nonzero. (Contributed by NM, 1-Nov-2014)

Ref Expression
Hypotheses dochkrsat.h
|- H = ( LHyp ` K )
dochkrsat.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochkrsat.u
|- U = ( ( DVecH ` K ) ` W )
dochkrsat.a
|- A = ( LSAtoms ` U )
dochkrsat.f
|- F = ( LFnl ` U )
dochkrsat.l
|- L = ( LKer ` U )
dochkrsat.z
|- .0. = ( 0g ` U )
dochkrsat.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dochkrsat.g
|- ( ph -> G e. F )
Assertion dochkrsat
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( L ` G ) ) e. A ) )

Proof

Step Hyp Ref Expression
1 dochkrsat.h
 |-  H = ( LHyp ` K )
2 dochkrsat.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 dochkrsat.u
 |-  U = ( ( DVecH ` K ) ` W )
4 dochkrsat.a
 |-  A = ( LSAtoms ` U )
5 dochkrsat.f
 |-  F = ( LFnl ` U )
6 dochkrsat.l
 |-  L = ( LKer ` U )
7 dochkrsat.z
 |-  .0. = ( 0g ` U )
8 dochkrsat.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 dochkrsat.g
 |-  ( ph -> G e. F )
10 eqid
 |-  ( Base ` U ) = ( Base ` U )
11 eqid
 |-  ( LSHyp ` U ) = ( LSHyp ` U )
12 1 2 3 10 11 5 6 8 9 dochkrshp
 |-  ( ph -> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= ( Base ` U ) <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) e. ( LSHyp ` U ) ) )
13 1 3 8 dvhlmod
 |-  ( ph -> U e. LMod )
14 10 5 6 13 9 lkrssv
 |-  ( ph -> ( L ` G ) C_ ( Base ` U ) )
15 1 2 3 10 7 8 14 dochn0nv
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) =/= ( Base ` U ) ) )
16 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
17 1 3 10 16 2 dochlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` G ) C_ ( Base ` U ) ) -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) )
18 8 14 17 syl2anc
 |-  ( ph -> ( ._|_ ` ( L ` G ) ) e. ( LSubSp ` U ) )
19 1 2 3 16 4 11 8 18 dochsatshpb
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) e. A <-> ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) e. ( LSHyp ` U ) ) )
20 12 15 19 3bitr4d
 |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) =/= { .0. } <-> ( ._|_ ` ( L ` G ) ) e. A ) )