Metamath Proof Explorer


Theorem dochkr1OLDN

Description: A nonzero functional has a value of 1 at some argument belonging to the orthocomplement of its kernel (when its kernel is a closed hyperplane). Tighter version of lfl1 . (Contributed by NM, 2-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dochkr1OLD.h H = LHyp K
dochkr1OLD.o ˙ = ocH K W
dochkr1OLD.u U = DVecH K W
dochkr1OLD.v V = Base U
dochkr1OLD.r R = Scalar U
dochkr1OLD.z 0 ˙ = 0 R
dochkr1OLD.i 1 ˙ = 1 R
dochkr1OLD.f F = LFnl U
dochkr1OLD.l L = LKer U
dochkr1OLD.k φ K HL W H
dochkr1OLD.g φ G F
dochkr1OLD.n φ ˙ ˙ L G V
Assertion dochkr1OLDN φ x ˙ L G G x = 1 ˙

Proof

Step Hyp Ref Expression
1 dochkr1OLD.h H = LHyp K
2 dochkr1OLD.o ˙ = ocH K W
3 dochkr1OLD.u U = DVecH K W
4 dochkr1OLD.v V = Base U
5 dochkr1OLD.r R = Scalar U
6 dochkr1OLD.z 0 ˙ = 0 R
7 dochkr1OLD.i 1 ˙ = 1 R
8 dochkr1OLD.f F = LFnl U
9 dochkr1OLD.l L = LKer U
10 dochkr1OLD.k φ K HL W H
11 dochkr1OLD.g φ G F
12 dochkr1OLD.n φ ˙ ˙ L G V
13 eqid 0 U = 0 U
14 eqid LSAtoms U = LSAtoms U
15 1 3 10 dvhlmod φ U LMod
16 1 2 3 4 14 8 9 10 11 dochkrsat2 φ ˙ ˙ L G V ˙ L G LSAtoms U
17 12 16 mpbid φ ˙ L G LSAtoms U
18 13 14 15 17 lsateln0 φ z ˙ L G z 0 U
19 10 ad2antrr φ z ˙ L G z 0 U K HL W H
20 11 ad2antrr φ z ˙ L G z 0 U G F
21 eldifsn z ˙ L G 0 U z ˙ L G z 0 U
22 21 biimpri z ˙ L G z 0 U z ˙ L G 0 U
23 22 adantll φ z ˙ L G z 0 U z ˙ L G 0 U
24 1 2 3 4 5 6 13 8 9 19 20 23 dochfln0 φ z ˙ L G z 0 U G z 0 ˙
25 24 ex φ z ˙ L G z 0 U G z 0 ˙
26 25 reximdva φ z ˙ L G z 0 U z ˙ L G G z 0 ˙
27 18 26 mpd φ z ˙ L G G z 0 ˙
28 4 8 9 15 11 lkrssv φ L G V
29 eqid LSubSp U = LSubSp U
30 1 3 4 29 2 dochlss K HL W H L G V ˙ L G LSubSp U
31 10 28 30 syl2anc φ ˙ L G LSubSp U
32 15 31 jca φ U LMod ˙ L G LSubSp U
33 32 3ad2ant1 φ z ˙ L G G z 0 ˙ U LMod ˙ L G LSubSp U
34 1 3 10 dvhlvec φ U LVec
35 34 3ad2ant1 φ z ˙ L G G z 0 ˙ U LVec
36 5 lvecdrng U LVec R DivRing
37 35 36 syl φ z ˙ L G G z 0 ˙ R DivRing
38 15 3ad2ant1 φ z ˙ L G G z 0 ˙ U LMod
39 11 3ad2ant1 φ z ˙ L G G z 0 ˙ G F
40 1 3 4 2 dochssv K HL W H L G V ˙ L G V
41 10 28 40 syl2anc φ ˙ L G V
42 41 sselda φ z ˙ L G z V
43 42 3adant3 φ z ˙ L G G z 0 ˙ z V
44 eqid Base R = Base R
45 5 44 4 8 lflcl U LMod G F z V G z Base R
46 38 39 43 45 syl3anc φ z ˙ L G G z 0 ˙ G z Base R
47 simp3 φ z ˙ L G G z 0 ˙ G z 0 ˙
48 eqid inv r R = inv r R
49 44 6 48 drnginvrcl R DivRing G z Base R G z 0 ˙ inv r R G z Base R
50 37 46 47 49 syl3anc φ z ˙ L G G z 0 ˙ inv r R G z Base R
51 simp2 φ z ˙ L G G z 0 ˙ z ˙ L G
52 eqid U = U
53 5 52 44 29 lssvscl U LMod ˙ L G LSubSp U inv r R G z Base R z ˙ L G inv r R G z U z ˙ L G
54 33 50 51 53 syl12anc φ z ˙ L G G z 0 ˙ inv r R G z U z ˙ L G
55 eqid R = R
56 5 44 55 4 52 8 lflmul U LMod G F inv r R G z Base R z V G inv r R G z U z = inv r R G z R G z
57 38 39 50 43 56 syl112anc φ z ˙ L G G z 0 ˙ G inv r R G z U z = inv r R G z R G z
58 44 6 55 7 48 drnginvrl R DivRing G z Base R G z 0 ˙ inv r R G z R G z = 1 ˙
59 37 46 47 58 syl3anc φ z ˙ L G G z 0 ˙ inv r R G z R G z = 1 ˙
60 57 59 eqtrd φ z ˙ L G G z 0 ˙ G inv r R G z U z = 1 ˙
61 fveqeq2 x = inv r R G z U z G x = 1 ˙ G inv r R G z U z = 1 ˙
62 61 rspcev inv r R G z U z ˙ L G G inv r R G z U z = 1 ˙ x ˙ L G G x = 1 ˙
63 54 60 62 syl2anc φ z ˙ L G G z 0 ˙ x ˙ L G G x = 1 ˙
64 63 rexlimdv3a φ z ˙ L G G z 0 ˙ x ˙ L G G x = 1 ˙
65 27 64 mpd φ x ˙ L G G x = 1 ˙