Metamath Proof Explorer


Theorem dochnel

Description: A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochnel.h H = LHyp K
dochnel.o ˙ = ocH K W
dochnel.u U = DVecH K W
dochnel.v V = Base U
dochnel.z 0 ˙ = 0 U
dochnel.k φ K HL W H
dochnel.x φ X V 0 ˙
Assertion dochnel φ ¬ X ˙ X

Proof

Step Hyp Ref Expression
1 dochnel.h H = LHyp K
2 dochnel.o ˙ = ocH K W
3 dochnel.u U = DVecH K W
4 dochnel.v V = Base U
5 dochnel.z 0 ˙ = 0 U
6 dochnel.k φ K HL W H
7 dochnel.x φ X V 0 ˙
8 eqid LSubSp U = LSubSp U
9 1 3 6 dvhlmod φ U LMod
10 7 eldifad φ X V
11 eqid LSpan U = LSpan U
12 4 8 11 lspsncl U LMod X V LSpan U X LSubSp U
13 9 10 12 syl2anc φ LSpan U X LSubSp U
14 4 11 lspsnid U LMod X V X LSpan U X
15 9 10 14 syl2anc φ X LSpan U X
16 eldifsni X V 0 ˙ X 0 ˙
17 7 16 syl φ X 0 ˙
18 eldifsn X LSpan U X 0 ˙ X LSpan U X X 0 ˙
19 15 17 18 sylanbrc φ X LSpan U X 0 ˙
20 1 3 8 5 2 6 13 19 dochnel2 φ ¬ X ˙ LSpan U X
21 10 snssd φ X V
22 1 3 2 4 11 6 21 dochocsp φ ˙ LSpan U X = ˙ X
23 20 22 neleqtrd φ ¬ X ˙ X