Metamath Proof Explorer


Theorem dochflcl

Description: Closure of the explicit functional G determined by a nonzero vector X . Compare the more general lshpkrcl . (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochflcl.h H = LHyp K
dochflcl.o ˙ = ocH K W
dochflcl.u U = DVecH K W
dochflcl.v V = Base U
dochflcl.z 0 ˙ = 0 U
dochflcl.a + ˙ = + U
dochflcl.t · ˙ = U
dochflcl.f F = LFnl U
dochflcl.d D = Scalar U
dochflcl.r R = Base D
dochflcl.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
dochflcl.k φ K HL W H
dochflcl.x φ X V 0 ˙
Assertion dochflcl φ G F

Proof

Step Hyp Ref Expression
1 dochflcl.h H = LHyp K
2 dochflcl.o ˙ = ocH K W
3 dochflcl.u U = DVecH K W
4 dochflcl.v V = Base U
5 dochflcl.z 0 ˙ = 0 U
6 dochflcl.a + ˙ = + U
7 dochflcl.t · ˙ = U
8 dochflcl.f F = LFnl U
9 dochflcl.d D = Scalar U
10 dochflcl.r R = Base D
11 dochflcl.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
12 dochflcl.k φ K HL W H
13 dochflcl.x φ X V 0 ˙
14 eqid LSpan U = LSpan U
15 eqid LSSum U = LSSum U
16 eqid LSHyp U = LSHyp U
17 1 3 12 dvhlvec φ U LVec
18 1 2 3 4 5 16 12 13 dochsnshp φ ˙ X LSHyp U
19 13 eldifad φ X V
20 1 2 3 4 5 14 15 12 13 dochexmidat φ ˙ X LSSum U LSpan U X = V
21 4 6 14 15 16 17 18 19 20 9 10 7 11 8 lshpkrcl φ G F