Metamath Proof Explorer


Theorem dochflcl

Description: Closure of the explicit functional G determined by a nonzero vector X . Compare the more general lshpkrcl . (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochflcl.h H=LHypK
dochflcl.o ˙=ocHKW
dochflcl.u U=DVecHKW
dochflcl.v V=BaseU
dochflcl.z 0˙=0U
dochflcl.a +˙=+U
dochflcl.t ·˙=U
dochflcl.f F=LFnlU
dochflcl.d D=ScalarU
dochflcl.r R=BaseD
dochflcl.g G=vVιkR|w˙Xv=w+˙k·˙X
dochflcl.k φKHLWH
dochflcl.x φXV0˙
Assertion dochflcl φGF

Proof

Step Hyp Ref Expression
1 dochflcl.h H=LHypK
2 dochflcl.o ˙=ocHKW
3 dochflcl.u U=DVecHKW
4 dochflcl.v V=BaseU
5 dochflcl.z 0˙=0U
6 dochflcl.a +˙=+U
7 dochflcl.t ·˙=U
8 dochflcl.f F=LFnlU
9 dochflcl.d D=ScalarU
10 dochflcl.r R=BaseD
11 dochflcl.g G=vVιkR|w˙Xv=w+˙k·˙X
12 dochflcl.k φKHLWH
13 dochflcl.x φXV0˙
14 eqid LSpanU=LSpanU
15 eqid LSSumU=LSSumU
16 eqid LSHypU=LSHypU
17 1 3 12 dvhlvec φULVec
18 1 2 3 4 5 16 12 13 dochsnshp φ˙XLSHypU
19 13 eldifad φXV
20 1 2 3 4 5 14 15 12 13 dochexmidat φ˙XLSSumULSpanUX=V
21 4 6 14 15 16 17 18 19 20 9 10 7 11 8 lshpkrcl φGF