| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochsnkr2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochsnkr2.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
dochsnkr2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
dochsnkr2.v |
|- V = ( Base ` U ) |
| 5 |
|
dochsnkr2.z |
|- .0. = ( 0g ` U ) |
| 6 |
|
dochsnkr2.a |
|- .+ = ( +g ` U ) |
| 7 |
|
dochsnkr2.t |
|- .x. = ( .s ` U ) |
| 8 |
|
dochsnkr2.l |
|- L = ( LKer ` U ) |
| 9 |
|
dochsnkr2.d |
|- D = ( Scalar ` U ) |
| 10 |
|
dochsnkr2.r |
|- R = ( Base ` D ) |
| 11 |
|
dochsnkr2.g |
|- G = ( v e. V |-> ( iota_ k e. R E. w e. ( ._|_ ` { X } ) v = ( w .+ ( k .x. X ) ) ) ) |
| 12 |
|
dochsnkr2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
dochsnkr2.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 14 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 15 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 16 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
| 17 |
1 3 12
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 18 |
1 2 3 4 5 16 12 13
|
dochsnshp |
|- ( ph -> ( ._|_ ` { X } ) e. ( LSHyp ` U ) ) |
| 19 |
13
|
eldifad |
|- ( ph -> X e. V ) |
| 20 |
1 2 3 4 5 14 15 12 13
|
dochexmidat |
|- ( ph -> ( ( ._|_ ` { X } ) ( LSSum ` U ) ( ( LSpan ` U ) ` { X } ) ) = V ) |
| 21 |
4 6 14 15 16 17 18 19 20 9 10 7 11 8
|
lshpkr |
|- ( ph -> ( L ` G ) = ( ._|_ ` { X } ) ) |