Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmid.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmid.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmid.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmid.v |
|- V = ( Base ` U ) |
5 |
|
dochexmid.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmid.p |
|- .(+) = ( LSSum ` U ) |
7 |
|
dochexmid.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
dochexmid.x |
|- ( ph -> X e. S ) |
9 |
|
dochexmid.c |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |
10 |
|
id |
|- ( X = { ( 0g ` U ) } -> X = { ( 0g ` U ) } ) |
11 |
|
fveq2 |
|- ( X = { ( 0g ` U ) } -> ( ._|_ ` X ) = ( ._|_ ` { ( 0g ` U ) } ) ) |
12 |
10 11
|
oveq12d |
|- ( X = { ( 0g ` U ) } -> ( X .(+) ( ._|_ ` X ) ) = ( { ( 0g ` U ) } .(+) ( ._|_ ` { ( 0g ` U ) } ) ) ) |
13 |
1 3 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
14 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
15 |
4 14
|
lmod0vcl |
|- ( U e. LMod -> ( 0g ` U ) e. V ) |
16 |
13 15
|
syl |
|- ( ph -> ( 0g ` U ) e. V ) |
17 |
16
|
snssd |
|- ( ph -> { ( 0g ` U ) } C_ V ) |
18 |
1 3 4 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { ( 0g ` U ) } C_ V ) -> ( ._|_ ` { ( 0g ` U ) } ) e. S ) |
19 |
7 17 18
|
syl2anc |
|- ( ph -> ( ._|_ ` { ( 0g ` U ) } ) e. S ) |
20 |
5
|
lsssubg |
|- ( ( U e. LMod /\ ( ._|_ ` { ( 0g ` U ) } ) e. S ) -> ( ._|_ ` { ( 0g ` U ) } ) e. ( SubGrp ` U ) ) |
21 |
13 19 20
|
syl2anc |
|- ( ph -> ( ._|_ ` { ( 0g ` U ) } ) e. ( SubGrp ` U ) ) |
22 |
14 6
|
lsm02 |
|- ( ( ._|_ ` { ( 0g ` U ) } ) e. ( SubGrp ` U ) -> ( { ( 0g ` U ) } .(+) ( ._|_ ` { ( 0g ` U ) } ) ) = ( ._|_ ` { ( 0g ` U ) } ) ) |
23 |
21 22
|
syl |
|- ( ph -> ( { ( 0g ` U ) } .(+) ( ._|_ ` { ( 0g ` U ) } ) ) = ( ._|_ ` { ( 0g ` U ) } ) ) |
24 |
1 3 2 4 14
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` { ( 0g ` U ) } ) = V ) |
25 |
7 24
|
syl |
|- ( ph -> ( ._|_ ` { ( 0g ` U ) } ) = V ) |
26 |
23 25
|
eqtrd |
|- ( ph -> ( { ( 0g ` U ) } .(+) ( ._|_ ` { ( 0g ` U ) } ) ) = V ) |
27 |
12 26
|
sylan9eqr |
|- ( ( ph /\ X = { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` X ) ) = V ) |
28 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
29 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
30 |
7
|
adantr |
|- ( ( ph /\ X =/= { ( 0g ` U ) } ) -> ( K e. HL /\ W e. H ) ) |
31 |
8
|
adantr |
|- ( ( ph /\ X =/= { ( 0g ` U ) } ) -> X e. S ) |
32 |
|
simpr |
|- ( ( ph /\ X =/= { ( 0g ` U ) } ) -> X =/= { ( 0g ` U ) } ) |
33 |
9
|
adantr |
|- ( ( ph /\ X =/= { ( 0g ` U ) } ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |
34 |
1 2 3 4 5 28 6 29 30 31 14 32 33
|
dochexmidlem8 |
|- ( ( ph /\ X =/= { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` X ) ) = V ) |
35 |
27 34
|
pm2.61dane |
|- ( ph -> ( X .(+) ( ._|_ ` X ) ) = V ) |