Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidlem1.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidlem1.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmidlem1.n |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidlem1.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidlem1.a |
|- A = ( LSAtoms ` U ) |
9 |
|
dochexmidlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dochexmidlem1.x |
|- ( ph -> X e. S ) |
11 |
|
dochexmidlem8.z |
|- .0. = ( 0g ` U ) |
12 |
|
dochexmidlem8.xn |
|- ( ph -> X =/= { .0. } ) |
13 |
|
dochexmidlem8.c |
|- ( ph -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |
14 |
|
nonconne |
|- -. ( X = X /\ X =/= X ) |
15 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
4 5
|
lssss |
|- ( X e. S -> X C_ V ) |
17 |
10 16
|
syl |
|- ( ph -> X C_ V ) |
18 |
1 3 4 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. S ) |
19 |
9 17 18
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. S ) |
20 |
5 7
|
lsmcl |
|- ( ( U e. LMod /\ X e. S /\ ( ._|_ ` X ) e. S ) -> ( X .(+) ( ._|_ ` X ) ) e. S ) |
21 |
15 10 19 20
|
syl3anc |
|- ( ph -> ( X .(+) ( ._|_ ` X ) ) e. S ) |
22 |
4 5
|
lssss |
|- ( ( X .(+) ( ._|_ ` X ) ) e. S -> ( X .(+) ( ._|_ ` X ) ) C_ V ) |
23 |
21 22
|
syl |
|- ( ph -> ( X .(+) ( ._|_ ` X ) ) C_ V ) |
24 |
15
|
adantr |
|- ( ( ph /\ ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) -> U e. LMod ) |
25 |
21
|
adantr |
|- ( ( ph /\ ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) -> ( X .(+) ( ._|_ ` X ) ) e. S ) |
26 |
4 5
|
lss1 |
|- ( U e. LMod -> V e. S ) |
27 |
15 26
|
syl |
|- ( ph -> V e. S ) |
28 |
27
|
adantr |
|- ( ( ph /\ ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) -> V e. S ) |
29 |
|
df-pss |
|- ( ( X .(+) ( ._|_ ` X ) ) C. V <-> ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) |
30 |
29
|
biimpri |
|- ( ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) -> ( X .(+) ( ._|_ ` X ) ) C. V ) |
31 |
30
|
adantl |
|- ( ( ph /\ ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) -> ( X .(+) ( ._|_ ` X ) ) C. V ) |
32 |
5 8 24 25 28 31
|
lpssat |
|- ( ( ph /\ ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) ) -> E. p e. A ( p C_ V /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) ) |
33 |
32
|
ex |
|- ( ph -> ( ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) -> E. p e. A ( p C_ V /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) ) ) |
34 |
9
|
3ad2ant1 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
35 |
10
|
3ad2ant1 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> X e. S ) |
36 |
|
simp2 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> p e. A ) |
37 |
|
eqid |
|- ( X .(+) p ) = ( X .(+) p ) |
38 |
12
|
3ad2ant1 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> X =/= { .0. } ) |
39 |
13
|
3ad2ant1 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |
40 |
|
simp3 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> -. p C_ ( X .(+) ( ._|_ ` X ) ) ) |
41 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem6 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( X .(+) p ) = X ) |
42 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem7 |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( X .(+) p ) =/= X ) |
43 |
41 42
|
pm2.21ddne |
|- ( ( ph /\ p e. A /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( X = X /\ X =/= X ) ) |
44 |
43
|
3adant3l |
|- ( ( ph /\ p e. A /\ ( p C_ V /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) ) -> ( X = X /\ X =/= X ) ) |
45 |
44
|
rexlimdv3a |
|- ( ph -> ( E. p e. A ( p C_ V /\ -. p C_ ( X .(+) ( ._|_ ` X ) ) ) -> ( X = X /\ X =/= X ) ) ) |
46 |
33 45
|
syld |
|- ( ph -> ( ( ( X .(+) ( ._|_ ` X ) ) C_ V /\ ( X .(+) ( ._|_ ` X ) ) =/= V ) -> ( X = X /\ X =/= X ) ) ) |
47 |
23 46
|
mpand |
|- ( ph -> ( ( X .(+) ( ._|_ ` X ) ) =/= V -> ( X = X /\ X =/= X ) ) ) |
48 |
47
|
necon1bd |
|- ( ph -> ( -. ( X = X /\ X =/= X ) -> ( X .(+) ( ._|_ ` X ) ) = V ) ) |
49 |
14 48
|
mpi |
|- ( ph -> ( X .(+) ( ._|_ ` X ) ) = V ) |