Metamath Proof Explorer


Theorem dochexmidlem8

Description: Lemma for dochexmid . The contradiction of dochexmidlem6 and dochexmidlem7 shows that there can be no atom p that is not in X + ( ._|_X ) , which is therefore the whole atom space. (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem8.z 0 ˙ = 0 U
dochexmidlem8.xn φ X 0 ˙
dochexmidlem8.c φ ˙ ˙ X = X
Assertion dochexmidlem8 φ X ˙ ˙ X = V

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem8.z 0 ˙ = 0 U
12 dochexmidlem8.xn φ X 0 ˙
13 dochexmidlem8.c φ ˙ ˙ X = X
14 nonconne ¬ X = X X X
15 1 3 9 dvhlmod φ U LMod
16 4 5 lssss X S X V
17 10 16 syl φ X V
18 1 3 4 5 2 dochlss K HL W H X V ˙ X S
19 9 17 18 syl2anc φ ˙ X S
20 5 7 lsmcl U LMod X S ˙ X S X ˙ ˙ X S
21 15 10 19 20 syl3anc φ X ˙ ˙ X S
22 4 5 lssss X ˙ ˙ X S X ˙ ˙ X V
23 21 22 syl φ X ˙ ˙ X V
24 15 adantr φ X ˙ ˙ X V X ˙ ˙ X V U LMod
25 21 adantr φ X ˙ ˙ X V X ˙ ˙ X V X ˙ ˙ X S
26 4 5 lss1 U LMod V S
27 15 26 syl φ V S
28 27 adantr φ X ˙ ˙ X V X ˙ ˙ X V V S
29 df-pss X ˙ ˙ X V X ˙ ˙ X V X ˙ ˙ X V
30 29 biimpri X ˙ ˙ X V X ˙ ˙ X V X ˙ ˙ X V
31 30 adantl φ X ˙ ˙ X V X ˙ ˙ X V X ˙ ˙ X V
32 5 8 24 25 28 31 lpssat φ X ˙ ˙ X V X ˙ ˙ X V p A p V ¬ p X ˙ ˙ X
33 32 ex φ X ˙ ˙ X V X ˙ ˙ X V p A p V ¬ p X ˙ ˙ X
34 9 3ad2ant1 φ p A ¬ p X ˙ ˙ X K HL W H
35 10 3ad2ant1 φ p A ¬ p X ˙ ˙ X X S
36 simp2 φ p A ¬ p X ˙ ˙ X p A
37 eqid X ˙ p = X ˙ p
38 12 3ad2ant1 φ p A ¬ p X ˙ ˙ X X 0 ˙
39 13 3ad2ant1 φ p A ¬ p X ˙ ˙ X ˙ ˙ X = X
40 simp3 φ p A ¬ p X ˙ ˙ X ¬ p X ˙ ˙ X
41 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 dochexmidlem6 φ p A ¬ p X ˙ ˙ X X ˙ p = X
42 1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40 dochexmidlem7 φ p A ¬ p X ˙ ˙ X X ˙ p X
43 41 42 pm2.21ddne φ p A ¬ p X ˙ ˙ X X = X X X
44 43 3adant3l φ p A p V ¬ p X ˙ ˙ X X = X X X
45 44 rexlimdv3a φ p A p V ¬ p X ˙ ˙ X X = X X X
46 33 45 syld φ X ˙ ˙ X V X ˙ ˙ X V X = X X X
47 23 46 mpand φ X ˙ ˙ X V X = X X X
48 47 necon1bd φ ¬ X = X X X X ˙ ˙ X = V
49 14 48 mpi φ X ˙ ˙ X = V