Metamath Proof Explorer


Theorem dochexmidlem7

Description: Lemma for dochexmid . Contradict dochexmidlem6 . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem6.pp φ p A
dochexmidlem6.z 0 ˙ = 0 U
dochexmidlem6.m M = X ˙ p
dochexmidlem6.xn φ X 0 ˙
dochexmidlem6.c φ ˙ ˙ X = X
dochexmidlem6.pl φ ¬ p X ˙ ˙ X
Assertion dochexmidlem7 φ M X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem6.pp φ p A
12 dochexmidlem6.z 0 ˙ = 0 U
13 dochexmidlem6.m M = X ˙ p
14 dochexmidlem6.xn φ X 0 ˙
15 dochexmidlem6.c φ ˙ ˙ X = X
16 dochexmidlem6.pl φ ¬ p X ˙ ˙ X
17 1 3 9 dvhlmod φ U LMod
18 5 lsssssubg U LMod S SubGrp U
19 17 18 syl φ S SubGrp U
20 19 10 sseldd φ X SubGrp U
21 5 8 17 11 lsatlssel φ p S
22 19 21 sseldd φ p SubGrp U
23 7 lsmub2 X SubGrp U p SubGrp U p X ˙ p
24 20 22 23 syl2anc φ p X ˙ p
25 24 13 sseqtrrdi φ p M
26 4 5 lssss X S X V
27 10 26 syl φ X V
28 1 3 4 5 2 dochlss K HL W H X V ˙ X S
29 9 27 28 syl2anc φ ˙ X S
30 19 29 sseldd φ ˙ X SubGrp U
31 7 lsmub1 X SubGrp U ˙ X SubGrp U X X ˙ ˙ X
32 20 30 31 syl2anc φ X X ˙ ˙ X
33 sstr2 p X X X ˙ ˙ X p X ˙ ˙ X
34 32 33 syl5com φ p X p X ˙ ˙ X
35 16 34 mtod φ ¬ p X
36 sseq2 M = X p M p X
37 36 biimpcd p M M = X p X
38 37 necon3bd p M ¬ p X M X
39 25 35 38 sylc φ M X