Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|
2 |
|
dochexmidlem1.o |
|
3 |
|
dochexmidlem1.u |
|
4 |
|
dochexmidlem1.v |
|
5 |
|
dochexmidlem1.s |
|
6 |
|
dochexmidlem1.n |
|
7 |
|
dochexmidlem1.p |
|
8 |
|
dochexmidlem1.a |
|
9 |
|
dochexmidlem1.k |
|
10 |
|
dochexmidlem1.x |
|
11 |
|
dochexmidlem6.pp |
|
12 |
|
dochexmidlem6.z |
|
13 |
|
dochexmidlem6.m |
|
14 |
|
dochexmidlem6.xn |
|
15 |
|
dochexmidlem6.c |
|
16 |
|
dochexmidlem6.pl |
|
17 |
1 3 9
|
dvhlmod |
|
18 |
5
|
lsssssubg |
|
19 |
17 18
|
syl |
|
20 |
19 10
|
sseldd |
|
21 |
5 8 17 11
|
lsatlssel |
|
22 |
19 21
|
sseldd |
|
23 |
7
|
lsmub2 |
|
24 |
20 22 23
|
syl2anc |
|
25 |
24 13
|
sseqtrrdi |
|
26 |
4 5
|
lssss |
|
27 |
10 26
|
syl |
|
28 |
1 3 4 5 2
|
dochlss |
|
29 |
9 27 28
|
syl2anc |
|
30 |
19 29
|
sseldd |
|
31 |
7
|
lsmub1 |
|
32 |
20 30 31
|
syl2anc |
|
33 |
|
sstr2 |
|
34 |
32 33
|
syl5com |
|
35 |
16 34
|
mtod |
|
36 |
|
sseq2 |
|
37 |
36
|
biimpcd |
|
38 |
37
|
necon3bd |
|
39 |
25 35 38
|
sylc |
|