Metamath Proof Explorer


Theorem dochexmidlem7

Description: Lemma for dochexmid . Contradict dochexmidlem6 . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidlem1.p = ( LSSum ‘ 𝑈 )
dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidlem1.x ( 𝜑𝑋𝑆 )
dochexmidlem6.pp ( 𝜑𝑝𝐴 )
dochexmidlem6.z 0 = ( 0g𝑈 )
dochexmidlem6.m 𝑀 = ( 𝑋 𝑝 )
dochexmidlem6.xn ( 𝜑𝑋 ≠ { 0 } )
dochexmidlem6.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
dochexmidlem6.pl ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )
Assertion dochexmidlem7 ( 𝜑𝑀𝑋 )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidlem1.p = ( LSSum ‘ 𝑈 )
8 dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 dochexmidlem1.x ( 𝜑𝑋𝑆 )
11 dochexmidlem6.pp ( 𝜑𝑝𝐴 )
12 dochexmidlem6.z 0 = ( 0g𝑈 )
13 dochexmidlem6.m 𝑀 = ( 𝑋 𝑝 )
14 dochexmidlem6.xn ( 𝜑𝑋 ≠ { 0 } )
15 dochexmidlem6.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
16 dochexmidlem6.pl ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )
17 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 5 lsssssubg ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
19 17 18 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
20 19 10 sseldd ( 𝜑𝑋 ∈ ( SubGrp ‘ 𝑈 ) )
21 5 8 17 11 lsatlssel ( 𝜑𝑝𝑆 )
22 19 21 sseldd ( 𝜑𝑝 ∈ ( SubGrp ‘ 𝑈 ) )
23 7 lsmub2 ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑝 ⊆ ( 𝑋 𝑝 ) )
24 20 22 23 syl2anc ( 𝜑𝑝 ⊆ ( 𝑋 𝑝 ) )
25 24 13 sseqtrrdi ( 𝜑𝑝𝑀 )
26 4 5 lssss ( 𝑋𝑆𝑋𝑉 )
27 10 26 syl ( 𝜑𝑋𝑉 )
28 1 3 4 5 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ 𝑆 )
29 9 27 28 syl2anc ( 𝜑 → ( 𝑋 ) ∈ 𝑆 )
30 19 29 sseldd ( 𝜑 → ( 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) )
31 7 lsmub1 ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 ( 𝑋 ) ) )
32 20 30 31 syl2anc ( 𝜑𝑋 ⊆ ( 𝑋 ( 𝑋 ) ) )
33 sstr2 ( 𝑝𝑋 → ( 𝑋 ⊆ ( 𝑋 ( 𝑋 ) ) → 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) ) )
34 32 33 syl5com ( 𝜑 → ( 𝑝𝑋𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) ) )
35 16 34 mtod ( 𝜑 → ¬ 𝑝𝑋 )
36 sseq2 ( 𝑀 = 𝑋 → ( 𝑝𝑀𝑝𝑋 ) )
37 36 biimpcd ( 𝑝𝑀 → ( 𝑀 = 𝑋𝑝𝑋 ) )
38 37 necon3bd ( 𝑝𝑀 → ( ¬ 𝑝𝑋𝑀𝑋 ) )
39 25 35 38 sylc ( 𝜑𝑀𝑋 )