Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem6.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem6.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
dochexmidlem6.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
14 |
|
dochexmidlem6.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
15 |
|
dochexmidlem6.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
16 |
|
dochexmidlem6.pl |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
5
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
20 |
19 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
21 |
5 8 17 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
22 |
19 21
|
sseldd |
⊢ ( 𝜑 → 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) |
23 |
7
|
lsmub2 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
25 |
24 13
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑝 ⊆ 𝑀 ) |
26 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
27 |
10 26
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
28 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
29 |
9 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
30 |
19 29
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
31 |
7
|
lsmub1 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
32 |
20 30 31
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
33 |
|
sstr2 |
⊢ ( 𝑝 ⊆ 𝑋 → ( 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
34 |
32 33
|
syl5com |
⊢ ( 𝜑 → ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
35 |
16 34
|
mtod |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ 𝑋 ) |
36 |
|
sseq2 |
⊢ ( 𝑀 = 𝑋 → ( 𝑝 ⊆ 𝑀 ↔ 𝑝 ⊆ 𝑋 ) ) |
37 |
36
|
biimpcd |
⊢ ( 𝑝 ⊆ 𝑀 → ( 𝑀 = 𝑋 → 𝑝 ⊆ 𝑋 ) ) |
38 |
37
|
necon3bd |
⊢ ( 𝑝 ⊆ 𝑀 → ( ¬ 𝑝 ⊆ 𝑋 → 𝑀 ≠ 𝑋 ) ) |
39 |
25 35 38
|
sylc |
⊢ ( 𝜑 → 𝑀 ≠ 𝑋 ) |