| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem6.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
| 12 |
|
dochexmidlem6.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 13 |
|
dochexmidlem6.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
| 14 |
|
dochexmidlem6.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
| 15 |
|
dochexmidlem6.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 16 |
|
dochexmidlem6.pl |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 18 |
5
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 20 |
19 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
| 21 |
5 8 17 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
| 22 |
19 21
|
sseldd |
⊢ ( 𝜑 → 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) |
| 23 |
7
|
lsmub2 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
| 24 |
20 22 23
|
syl2anc |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
| 25 |
24 13
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑝 ⊆ 𝑀 ) |
| 26 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
| 27 |
10 26
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 28 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 29 |
9 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 30 |
19 29
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 31 |
7
|
lsmub1 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 32 |
20 30 31
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 33 |
|
sstr2 |
⊢ ( 𝑝 ⊆ 𝑋 → ( 𝑋 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 34 |
32 33
|
syl5com |
⊢ ( 𝜑 → ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 35 |
16 34
|
mtod |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ 𝑋 ) |
| 36 |
|
sseq2 |
⊢ ( 𝑀 = 𝑋 → ( 𝑝 ⊆ 𝑀 ↔ 𝑝 ⊆ 𝑋 ) ) |
| 37 |
36
|
biimpcd |
⊢ ( 𝑝 ⊆ 𝑀 → ( 𝑀 = 𝑋 → 𝑝 ⊆ 𝑋 ) ) |
| 38 |
37
|
necon3bd |
⊢ ( 𝑝 ⊆ 𝑀 → ( ¬ 𝑝 ⊆ 𝑋 → 𝑀 ≠ 𝑋 ) ) |
| 39 |
25 35 38
|
sylc |
⊢ ( 𝜑 → 𝑀 ≠ 𝑋 ) |