Metamath Proof Explorer


Theorem dochexmidlem6

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidlem1.p = ( LSSum ‘ 𝑈 )
dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidlem1.x ( 𝜑𝑋𝑆 )
dochexmidlem6.pp ( 𝜑𝑝𝐴 )
dochexmidlem6.z 0 = ( 0g𝑈 )
dochexmidlem6.m 𝑀 = ( 𝑋 𝑝 )
dochexmidlem6.xn ( 𝜑𝑋 ≠ { 0 } )
dochexmidlem6.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
dochexmidlem6.pl ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )
Assertion dochexmidlem6 ( 𝜑𝑀 = 𝑋 )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidlem1.p = ( LSSum ‘ 𝑈 )
8 dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 dochexmidlem1.x ( 𝜑𝑋𝑆 )
11 dochexmidlem6.pp ( 𝜑𝑝𝐴 )
12 dochexmidlem6.z 0 = ( 0g𝑈 )
13 dochexmidlem6.m 𝑀 = ( 𝑋 𝑝 )
14 dochexmidlem6.xn ( 𝜑𝑋 ≠ { 0 } )
15 dochexmidlem6.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
16 dochexmidlem6.pl ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 dochexmidlem5 ( 𝜑 → ( ( 𝑋 ) ∩ 𝑀 ) = { 0 } )
18 17 fveq2d ( 𝜑 → ( ‘ ( ( 𝑋 ) ∩ 𝑀 ) ) = ( ‘ { 0 } ) )
19 1 3 2 4 12 doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { 0 } ) = 𝑉 )
20 9 19 syl ( 𝜑 → ( ‘ { 0 } ) = 𝑉 )
21 18 20 eqtrd ( 𝜑 → ( ‘ ( ( 𝑋 ) ∩ 𝑀 ) ) = 𝑉 )
22 21 ineq1d ( 𝜑 → ( ( ‘ ( ( 𝑋 ) ∩ 𝑀 ) ) ∩ 𝑀 ) = ( 𝑉𝑀 ) )
23 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
24 4 5 lssss ( 𝑋𝑆𝑋𝑉 )
25 10 24 syl ( 𝜑𝑋𝑉 )
26 1 3 4 2 dochssv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ⊆ 𝑉 )
27 9 25 26 syl2anc ( 𝜑 → ( 𝑋 ) ⊆ 𝑉 )
28 1 23 3 4 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋 ) ⊆ 𝑉 ) → ( ‘ ( 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
29 9 27 28 syl2anc ( 𝜑 → ( ‘ ( 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
30 15 29 eqeltrrd ( 𝜑𝑋 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
31 1 23 3 7 8 9 30 11 dihsmatrn ( 𝜑 → ( 𝑋 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
32 13 31 eqeltrid ( 𝜑𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
33 1 3 23 5 dihrnlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑀𝑆 )
34 9 32 33 syl2anc ( 𝜑𝑀𝑆 )
35 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
36 5 8 35 11 lsatlssel ( 𝜑𝑝𝑆 )
37 5 7 lsmcl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑆𝑝𝑆 ) → ( 𝑋 𝑝 ) ∈ 𝑆 )
38 35 10 36 37 syl3anc ( 𝜑 → ( 𝑋 𝑝 ) ∈ 𝑆 )
39 4 5 lssss ( ( 𝑋 𝑝 ) ∈ 𝑆 → ( 𝑋 𝑝 ) ⊆ 𝑉 )
40 38 39 syl ( 𝜑 → ( 𝑋 𝑝 ) ⊆ 𝑉 )
41 13 40 eqsstrid ( 𝜑𝑀𝑉 )
42 1 23 3 4 2 9 41 dochoccl ( 𝜑 → ( 𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ‘ ( 𝑀 ) ) = 𝑀 ) )
43 32 42 mpbid ( 𝜑 → ( ‘ ( 𝑀 ) ) = 𝑀 )
44 5 lsssssubg ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
45 35 44 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
46 45 10 sseldd ( 𝜑𝑋 ∈ ( SubGrp ‘ 𝑈 ) )
47 45 36 sseldd ( 𝜑𝑝 ∈ ( SubGrp ‘ 𝑈 ) )
48 7 lsmub1 ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 𝑝 ) )
49 46 47 48 syl2anc ( 𝜑𝑋 ⊆ ( 𝑋 𝑝 ) )
50 49 13 sseqtrrdi ( 𝜑𝑋𝑀 )
51 1 3 5 2 9 10 34 43 50 dihoml4 ( 𝜑 → ( ( ‘ ( ( 𝑋 ) ∩ 𝑀 ) ) ∩ 𝑀 ) = ( ‘ ( 𝑋 ) ) )
52 sseqin2 ( 𝑀𝑉 ↔ ( 𝑉𝑀 ) = 𝑀 )
53 41 52 sylib ( 𝜑 → ( 𝑉𝑀 ) = 𝑀 )
54 22 51 53 3eqtr3rd ( 𝜑𝑀 = ( ‘ ( 𝑋 ) ) )
55 54 15 eqtrd ( 𝜑𝑀 = 𝑋 )