Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem6.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem6.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
dochexmidlem6.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
14 |
|
dochexmidlem6.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
15 |
|
dochexmidlem6.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
16 |
|
dochexmidlem6.pl |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
|
dochexmidlem5 |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = { 0 } ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) = ( ⊥ ‘ { 0 } ) ) |
19 |
1 3 2 4 12
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { 0 } ) = 𝑉 ) |
20 |
9 19
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ { 0 } ) = 𝑉 ) |
21 |
18 20
|
eqtrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) = 𝑉 ) |
22 |
21
|
ineq1d |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) ∩ 𝑀 ) = ( 𝑉 ∩ 𝑀 ) ) |
23 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
26 |
1 3 4 2
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
27 |
9 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
28 |
1 23 3 4 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
29 |
9 27 28
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
30 |
15 29
|
eqeltrrd |
⊢ ( 𝜑 → 𝑋 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
31 |
1 23 3 7 8 9 30 11
|
dihsmatrn |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
32 |
13 31
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
33 |
1 3 23 5
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑀 ∈ 𝑆 ) |
34 |
9 32 33
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ 𝑆 ) |
35 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
36 |
5 8 35 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
37 |
5 7
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ 𝑆 ) → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
38 |
35 10 36 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
39 |
4 5
|
lssss |
⊢ ( ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 → ( 𝑋 ⊕ 𝑝 ) ⊆ 𝑉 ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑝 ) ⊆ 𝑉 ) |
41 |
13 40
|
eqsstrid |
⊢ ( 𝜑 → 𝑀 ⊆ 𝑉 ) |
42 |
1 23 3 4 2 9 41
|
dochoccl |
⊢ ( 𝜑 → ( 𝑀 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑀 ) ) = 𝑀 ) ) |
43 |
32 42
|
mpbid |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑀 ) ) = 𝑀 ) |
44 |
5
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
45 |
35 44
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
46 |
45 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
47 |
45 36
|
sseldd |
⊢ ( 𝜑 → 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) |
48 |
7
|
lsmub1 |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ 𝑝 ∈ ( SubGrp ‘ 𝑈 ) ) → 𝑋 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
49 |
46 47 48
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
50 |
49 13
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑀 ) |
51 |
1 3 5 2 9 10 34 43 50
|
dihoml4 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) ∩ 𝑀 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
52 |
|
sseqin2 |
⊢ ( 𝑀 ⊆ 𝑉 ↔ ( 𝑉 ∩ 𝑀 ) = 𝑀 ) |
53 |
41 52
|
sylib |
⊢ ( 𝜑 → ( 𝑉 ∩ 𝑀 ) = 𝑀 ) |
54 |
22 51 53
|
3eqtr3rd |
⊢ ( 𝜑 → 𝑀 = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
55 |
54 15
|
eqtrd |
⊢ ( 𝜑 → 𝑀 = 𝑋 ) |