Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem5.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem5.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
dochexmidlem5.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
14 |
|
dochexmidlem5.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
15 |
|
dochexmidlem5.pl |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
16 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → 𝑈 ∈ LMod ) |
18 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
20 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
21 |
9 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
22 |
5 8 16 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
23 |
5 7
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ 𝑆 ) → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
24 |
16 10 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
25 |
13 24
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑆 ) |
26 |
5
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ∧ 𝑀 ∈ 𝑆 ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
27 |
16 21 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) |
30 |
5 12 8 17 28 29
|
lssatomic |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) ) |
32 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑋 ∈ 𝑆 ) |
34 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑝 ∈ 𝐴 ) |
35 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑞 ∈ 𝐴 ) |
36 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑋 ≠ { 0 } ) |
37 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
38 |
1 2 3 4 5 6 7 8 32 33 34 35 12 13 36 37
|
dochexmidlem4 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
39 |
38
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
40 |
31 39
|
syld |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
41 |
40
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = { 0 } ) ) |
42 |
15 41
|
mpd |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = { 0 } ) |