| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem5.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
| 12 |
|
dochexmidlem5.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 13 |
|
dochexmidlem5.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
| 14 |
|
dochexmidlem5.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
| 15 |
|
dochexmidlem5.pl |
⊢ ( 𝜑 → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 16 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → 𝑈 ∈ LMod ) |
| 18 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
| 19 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 20 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 21 |
9 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 22 |
5 8 16 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
| 23 |
5 7
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ 𝑆 ) → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
| 24 |
16 10 22 23
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑝 ) ∈ 𝑆 ) |
| 25 |
13 24
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑆 ) |
| 26 |
5
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ∧ 𝑀 ∈ 𝑆 ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
| 27 |
16 21 25 26
|
syl3anc |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ∈ 𝑆 ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) |
| 30 |
5 12 8 17 28 29
|
lssatomic |
⊢ ( ( 𝜑 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } ) → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
| 31 |
30
|
ex |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } → ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) ) |
| 32 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 33 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑋 ∈ 𝑆 ) |
| 34 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑝 ∈ 𝐴 ) |
| 35 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑞 ∈ 𝐴 ) |
| 36 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑋 ≠ { 0 } ) |
| 37 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
| 38 |
1 2 3 4 5 6 7 8 32 33 34 35 12 13 36 37
|
dochexmidlem4 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 39 |
38
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑞 ∈ 𝐴 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 40 |
31 39
|
syld |
⊢ ( 𝜑 → ( ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ≠ { 0 } → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 41 |
40
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = { 0 } ) ) |
| 42 |
15 41
|
mpd |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) = { 0 } ) |