Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidlem1.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidlem1.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmidlem1.n |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidlem1.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidlem1.a |
|- A = ( LSAtoms ` U ) |
9 |
|
dochexmidlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dochexmidlem1.x |
|- ( ph -> X e. S ) |
11 |
|
dochexmidlem5.pp |
|- ( ph -> p e. A ) |
12 |
|
dochexmidlem5.z |
|- .0. = ( 0g ` U ) |
13 |
|
dochexmidlem5.m |
|- M = ( X .(+) p ) |
14 |
|
dochexmidlem5.xn |
|- ( ph -> X =/= { .0. } ) |
15 |
|
dochexmidlem5.pl |
|- ( ph -> -. p C_ ( X .(+) ( ._|_ ` X ) ) ) |
16 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( ( ._|_ ` X ) i^i M ) =/= { .0. } ) -> U e. LMod ) |
18 |
4 5
|
lssss |
|- ( X e. S -> X C_ V ) |
19 |
10 18
|
syl |
|- ( ph -> X C_ V ) |
20 |
1 3 4 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. S ) |
21 |
9 19 20
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. S ) |
22 |
5 8 16 11
|
lsatlssel |
|- ( ph -> p e. S ) |
23 |
5 7
|
lsmcl |
|- ( ( U e. LMod /\ X e. S /\ p e. S ) -> ( X .(+) p ) e. S ) |
24 |
16 10 22 23
|
syl3anc |
|- ( ph -> ( X .(+) p ) e. S ) |
25 |
13 24
|
eqeltrid |
|- ( ph -> M e. S ) |
26 |
5
|
lssincl |
|- ( ( U e. LMod /\ ( ._|_ ` X ) e. S /\ M e. S ) -> ( ( ._|_ ` X ) i^i M ) e. S ) |
27 |
16 21 25 26
|
syl3anc |
|- ( ph -> ( ( ._|_ ` X ) i^i M ) e. S ) |
28 |
27
|
adantr |
|- ( ( ph /\ ( ( ._|_ ` X ) i^i M ) =/= { .0. } ) -> ( ( ._|_ ` X ) i^i M ) e. S ) |
29 |
|
simpr |
|- ( ( ph /\ ( ( ._|_ ` X ) i^i M ) =/= { .0. } ) -> ( ( ._|_ ` X ) i^i M ) =/= { .0. } ) |
30 |
5 12 8 17 28 29
|
lssatomic |
|- ( ( ph /\ ( ( ._|_ ` X ) i^i M ) =/= { .0. } ) -> E. q e. A q C_ ( ( ._|_ ` X ) i^i M ) ) |
31 |
30
|
ex |
|- ( ph -> ( ( ( ._|_ ` X ) i^i M ) =/= { .0. } -> E. q e. A q C_ ( ( ._|_ ` X ) i^i M ) ) ) |
32 |
9
|
3ad2ant1 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> ( K e. HL /\ W e. H ) ) |
33 |
10
|
3ad2ant1 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> X e. S ) |
34 |
11
|
3ad2ant1 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> p e. A ) |
35 |
|
simp2 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> q e. A ) |
36 |
14
|
3ad2ant1 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> X =/= { .0. } ) |
37 |
|
simp3 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> q C_ ( ( ._|_ ` X ) i^i M ) ) |
38 |
1 2 3 4 5 6 7 8 32 33 34 35 12 13 36 37
|
dochexmidlem4 |
|- ( ( ph /\ q e. A /\ q C_ ( ( ._|_ ` X ) i^i M ) ) -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |
39 |
38
|
rexlimdv3a |
|- ( ph -> ( E. q e. A q C_ ( ( ._|_ ` X ) i^i M ) -> p C_ ( X .(+) ( ._|_ ` X ) ) ) ) |
40 |
31 39
|
syld |
|- ( ph -> ( ( ( ._|_ ` X ) i^i M ) =/= { .0. } -> p C_ ( X .(+) ( ._|_ ` X ) ) ) ) |
41 |
40
|
necon1bd |
|- ( ph -> ( -. p C_ ( X .(+) ( ._|_ ` X ) ) -> ( ( ._|_ ` X ) i^i M ) = { .0. } ) ) |
42 |
15 41
|
mpd |
|- ( ph -> ( ( ._|_ ` X ) i^i M ) = { .0. } ) |