Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidlem1.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidlem1.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmidlem1.n |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidlem1.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidlem1.a |
|- A = ( LSAtoms ` U ) |
9 |
|
dochexmidlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dochexmidlem1.x |
|- ( ph -> X e. S ) |
11 |
|
dochexmidlem4.pp |
|- ( ph -> p e. A ) |
12 |
|
dochexmidlem4.qq |
|- ( ph -> q e. A ) |
13 |
|
dochexmidlem4.z |
|- .0. = ( 0g ` U ) |
14 |
|
dochexmidlem4.m |
|- M = ( X .(+) p ) |
15 |
|
dochexmidlem4.xn |
|- ( ph -> X =/= { .0. } ) |
16 |
|
dochexmidlem4.pl |
|- ( ph -> q C_ ( ( ._|_ ` X ) i^i M ) ) |
17 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
5 8 17 11
|
lsatlssel |
|- ( ph -> p e. S ) |
19 |
|
inss2 |
|- ( ( ._|_ ` X ) i^i M ) C_ M |
20 |
16 19
|
sstrdi |
|- ( ph -> q C_ M ) |
21 |
20 14
|
sseqtrdi |
|- ( ph -> q C_ ( X .(+) p ) ) |
22 |
13 5 7 8 17 10 18 12 15 21
|
lsmsat |
|- ( ph -> E. r e. A ( r C_ X /\ q C_ ( r .(+) p ) ) ) |
23 |
9
|
3ad2ant1 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
10
|
3ad2ant1 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> X e. S ) |
25 |
11
|
3ad2ant1 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> p e. A ) |
26 |
12
|
3ad2ant1 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> q e. A ) |
27 |
|
simp2 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> r e. A ) |
28 |
|
inss1 |
|- ( ( ._|_ ` X ) i^i M ) C_ ( ._|_ ` X ) |
29 |
16 28
|
sstrdi |
|- ( ph -> q C_ ( ._|_ ` X ) ) |
30 |
29
|
3ad2ant1 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> q C_ ( ._|_ ` X ) ) |
31 |
|
simp3l |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> r C_ X ) |
32 |
|
simp3r |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> q C_ ( r .(+) p ) ) |
33 |
1 2 3 4 5 6 7 8 23 24 25 26 27 30 31 32
|
dochexmidlem3 |
|- ( ( ph /\ r e. A /\ ( r C_ X /\ q C_ ( r .(+) p ) ) ) -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |
34 |
33
|
rexlimdv3a |
|- ( ph -> ( E. r e. A ( r C_ X /\ q C_ ( r .(+) p ) ) -> p C_ ( X .(+) ( ._|_ ` X ) ) ) ) |
35 |
22 34
|
mpd |
|- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |