Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsat.o |
|- .0. = ( 0g ` W ) |
2 |
|
lsmsat.s |
|- S = ( LSubSp ` W ) |
3 |
|
lsmsat.p |
|- .(+) = ( LSSum ` W ) |
4 |
|
lsmsat.a |
|- A = ( LSAtoms ` W ) |
5 |
|
lsmsat.w |
|- ( ph -> W e. LMod ) |
6 |
|
lsmsat.t |
|- ( ph -> T e. S ) |
7 |
|
lsmsat.u |
|- ( ph -> U e. S ) |
8 |
|
lsmsat.q |
|- ( ph -> Q e. A ) |
9 |
|
lsmsat.n |
|- ( ph -> T =/= { .0. } ) |
10 |
|
lsmsat.l |
|- ( ph -> Q C_ ( T .(+) U ) ) |
11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
12 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
13 |
11 12 1 4
|
islsat |
|- ( W e. LMod -> ( Q e. A <-> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) ) |
14 |
5 13
|
syl |
|- ( ph -> ( Q e. A <-> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) ) |
15 |
8 14
|
mpbid |
|- ( ph -> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) |
16 |
|
simp3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> Q = ( ( LSpan ` W ) ` { r } ) ) |
17 |
10
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> Q C_ ( T .(+) U ) ) |
18 |
16 17
|
eqsstrrd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( T .(+) U ) ) |
19 |
5
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> W e. LMod ) |
20 |
2 3
|
lsmcl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |
21 |
5 6 7 20
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. S ) |
22 |
21
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( T .(+) U ) e. S ) |
23 |
|
eldifi |
|- ( r e. ( ( Base ` W ) \ { .0. } ) -> r e. ( Base ` W ) ) |
24 |
23
|
3ad2ant2 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> r e. ( Base ` W ) ) |
25 |
11 2 12 19 22 24
|
lspsnel5 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( r e. ( T .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( T .(+) U ) ) ) |
26 |
18 25
|
mpbird |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> r e. ( T .(+) U ) ) |
27 |
2
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
28 |
19 27
|
syl |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> S C_ ( SubGrp ` W ) ) |
29 |
6
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> T e. S ) |
30 |
28 29
|
sseldd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> T e. ( SubGrp ` W ) ) |
31 |
7
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> U e. S ) |
32 |
28 31
|
sseldd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> U e. ( SubGrp ` W ) ) |
33 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
34 |
33 3
|
lsmelval |
|- ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( r e. ( T .(+) U ) <-> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) ) |
35 |
30 32 34
|
syl2anc |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( r e. ( T .(+) U ) <-> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) ) |
36 |
26 35
|
mpbid |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) |
37 |
1 2
|
lssne0 |
|- ( T e. S -> ( T =/= { .0. } <-> E. q e. T q =/= .0. ) ) |
38 |
6 37
|
syl |
|- ( ph -> ( T =/= { .0. } <-> E. q e. T q =/= .0. ) ) |
39 |
9 38
|
mpbid |
|- ( ph -> E. q e. T q =/= .0. ) |
40 |
39
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> E. q e. T q =/= .0. ) |
41 |
40
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> E. q e. T q =/= .0. ) |
42 |
41
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> E. q e. T q =/= .0. ) |
43 |
5
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> W e. LMod ) |
44 |
43
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> W e. LMod ) |
45 |
44
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> W e. LMod ) |
46 |
6
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> T e. S ) |
47 |
46
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> T e. S ) |
48 |
47
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> T e. S ) |
49 |
|
simpr2 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q e. T ) |
50 |
11 2
|
lssel |
|- ( ( T e. S /\ q e. T ) -> q e. ( Base ` W ) ) |
51 |
48 49 50
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q e. ( Base ` W ) ) |
52 |
|
simpr3 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q =/= .0. ) |
53 |
11 12 1 4
|
lsatlspsn2 |
|- ( ( W e. LMod /\ q e. ( Base ` W ) /\ q =/= .0. ) -> ( ( LSpan ` W ) ` { q } ) e. A ) |
54 |
45 51 52 53
|
syl3anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) e. A ) |
55 |
2 12 45 48 49
|
lspsnel5a |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) C_ T ) |
56 |
|
simpl3 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> r = ( y ( +g ` W ) z ) ) |
57 |
|
simpr1 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> y = .0. ) |
58 |
57
|
oveq1d |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( y ( +g ` W ) z ) = ( .0. ( +g ` W ) z ) ) |
59 |
7
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> U e. S ) |
60 |
59
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> U e. S ) |
61 |
|
simp2r |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> z e. U ) |
62 |
11 2
|
lssel |
|- ( ( U e. S /\ z e. U ) -> z e. ( Base ` W ) ) |
63 |
60 61 62
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> z e. ( Base ` W ) ) |
64 |
63
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> z e. ( Base ` W ) ) |
65 |
11 33 1
|
lmod0vlid |
|- ( ( W e. LMod /\ z e. ( Base ` W ) ) -> ( .0. ( +g ` W ) z ) = z ) |
66 |
45 64 65
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( .0. ( +g ` W ) z ) = z ) |
67 |
56 58 66
|
3eqtrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> r = z ) |
68 |
67
|
sneqd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> { r } = { z } ) |
69 |
68
|
fveq2d |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) = ( ( LSpan ` W ) ` { z } ) ) |
70 |
2 12 44 60 61
|
lspsnel5a |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { z } ) C_ U ) |
71 |
70
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { z } ) C_ U ) |
72 |
69 71
|
eqsstrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) C_ U ) |
73 |
11 12
|
lspsnsubg |
|- ( ( W e. LMod /\ q e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) ) |
74 |
45 51 73
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) ) |
75 |
45 27
|
syl |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> S C_ ( SubGrp ` W ) ) |
76 |
60
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U e. S ) |
77 |
75 76
|
sseldd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U e. ( SubGrp ` W ) ) |
78 |
3
|
lsmub2 |
|- ( ( ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> U C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
79 |
74 77 78
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
80 |
72 79
|
sstrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
81 |
|
sseq1 |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( p C_ T <-> ( ( LSpan ` W ) ` { q } ) C_ T ) ) |
82 |
|
oveq1 |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( p .(+) U ) = ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
83 |
82
|
sseq2d |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) |
84 |
81 83
|
anbi12d |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) <-> ( ( ( LSpan ` W ) ` { q } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) ) |
85 |
84
|
rspcev |
|- ( ( ( ( LSpan ` W ) ` { q } ) e. A /\ ( ( ( LSpan ` W ) ` { q } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
86 |
54 55 80 85
|
syl12anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
87 |
86
|
3exp2 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( y = .0. -> ( q e. T -> ( q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) ) |
88 |
87
|
imp |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> ( q e. T -> ( q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) |
89 |
88
|
rexlimdv |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> ( E. q e. T q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
90 |
42 89
|
mpd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
91 |
44
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> W e. LMod ) |
92 |
|
simp2l |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> y e. T ) |
93 |
11 2
|
lssel |
|- ( ( T e. S /\ y e. T ) -> y e. ( Base ` W ) ) |
94 |
47 92 93
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> y e. ( Base ` W ) ) |
95 |
94
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> y e. ( Base ` W ) ) |
96 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> y =/= .0. ) |
97 |
11 12 1 4
|
lsatlspsn2 |
|- ( ( W e. LMod /\ y e. ( Base ` W ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) e. A ) |
98 |
91 95 96 97
|
syl3anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) e. A ) |
99 |
2 12 44 47 92
|
lspsnel5a |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) C_ T ) |
100 |
99
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) C_ T ) |
101 |
|
simp3 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> r = ( y ( +g ` W ) z ) ) |
102 |
101
|
sneqd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> { r } = { ( y ( +g ` W ) z ) } ) |
103 |
102
|
fveq2d |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) = ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) ) |
104 |
11 33 12
|
lspvadd |
|- ( ( W e. LMod /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
105 |
44 94 63 104
|
syl3anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
106 |
103 105
|
eqsstrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
107 |
11 12 3 44 94 63
|
lsmpr |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y , z } ) = ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) ) |
108 |
106 107
|
sseqtrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) ) |
109 |
44 27
|
syl |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> S C_ ( SubGrp ` W ) ) |
110 |
11 2 12
|
lspsncl |
|- ( ( W e. LMod /\ y e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { y } ) e. S ) |
111 |
44 94 110
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) e. S ) |
112 |
109 111
|
sseldd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) e. ( SubGrp ` W ) ) |
113 |
109 60
|
sseldd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> U e. ( SubGrp ` W ) ) |
114 |
3
|
lsmless2 |
|- ( ( ( ( LSpan ` W ) ` { y } ) e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) /\ ( ( LSpan ` W ) ` { z } ) C_ U ) -> ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
115 |
112 113 70 114
|
syl3anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
116 |
108 115
|
sstrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
117 |
116
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
118 |
|
sseq1 |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( p C_ T <-> ( ( LSpan ` W ) ` { y } ) C_ T ) ) |
119 |
|
oveq1 |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( p .(+) U ) = ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
120 |
119
|
sseq2d |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) |
121 |
118 120
|
anbi12d |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) <-> ( ( ( LSpan ` W ) ` { y } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) ) |
122 |
121
|
rspcev |
|- ( ( ( ( LSpan ` W ) ` { y } ) e. A /\ ( ( ( LSpan ` W ) ` { y } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
123 |
98 100 117 122
|
syl12anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
124 |
90 123
|
pm2.61dane |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
125 |
124
|
3exp |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> ( ( y e. T /\ z e. U ) -> ( r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) |
126 |
125
|
rexlimdvv |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> ( E. y e. T E. z e. U r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
127 |
126
|
3adant3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( E. y e. T E. z e. U r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
128 |
36 127
|
mpd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
129 |
|
sseq1 |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( Q C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
130 |
129
|
anbi2d |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
131 |
130
|
rexbidv |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
132 |
131
|
3ad2ant3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
133 |
128 132
|
mpbird |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) |
134 |
133
|
3exp |
|- ( ph -> ( r e. ( ( Base ` W ) \ { .0. } ) -> ( Q = ( ( LSpan ` W ) ` { r } ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) ) ) |
135 |
134
|
rexlimdv |
|- ( ph -> ( E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) ) |
136 |
15 135
|
mpd |
|- ( ph -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) |