| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsat.o |
|- .0. = ( 0g ` W ) |
| 2 |
|
lsmsat.s |
|- S = ( LSubSp ` W ) |
| 3 |
|
lsmsat.p |
|- .(+) = ( LSSum ` W ) |
| 4 |
|
lsmsat.a |
|- A = ( LSAtoms ` W ) |
| 5 |
|
lsmsat.w |
|- ( ph -> W e. LMod ) |
| 6 |
|
lsmsat.t |
|- ( ph -> T e. S ) |
| 7 |
|
lsmsat.u |
|- ( ph -> U e. S ) |
| 8 |
|
lsmsat.q |
|- ( ph -> Q e. A ) |
| 9 |
|
lsmsat.n |
|- ( ph -> T =/= { .0. } ) |
| 10 |
|
lsmsat.l |
|- ( ph -> Q C_ ( T .(+) U ) ) |
| 11 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 12 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
| 13 |
11 12 1 4
|
islsat |
|- ( W e. LMod -> ( Q e. A <-> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) ) |
| 14 |
5 13
|
syl |
|- ( ph -> ( Q e. A <-> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) ) |
| 15 |
8 14
|
mpbid |
|- ( ph -> E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) ) |
| 16 |
|
simp3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> Q = ( ( LSpan ` W ) ` { r } ) ) |
| 17 |
10
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> Q C_ ( T .(+) U ) ) |
| 18 |
16 17
|
eqsstrrd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( T .(+) U ) ) |
| 19 |
5
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> W e. LMod ) |
| 20 |
2 3
|
lsmcl |
|- ( ( W e. LMod /\ T e. S /\ U e. S ) -> ( T .(+) U ) e. S ) |
| 21 |
5 6 7 20
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. S ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( T .(+) U ) e. S ) |
| 23 |
|
eldifi |
|- ( r e. ( ( Base ` W ) \ { .0. } ) -> r e. ( Base ` W ) ) |
| 24 |
23
|
3ad2ant2 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> r e. ( Base ` W ) ) |
| 25 |
11 2 12 19 22 24
|
ellspsn5b |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( r e. ( T .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( T .(+) U ) ) ) |
| 26 |
18 25
|
mpbird |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> r e. ( T .(+) U ) ) |
| 27 |
2
|
lsssssubg |
|- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 28 |
19 27
|
syl |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> S C_ ( SubGrp ` W ) ) |
| 29 |
6
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> T e. S ) |
| 30 |
28 29
|
sseldd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> T e. ( SubGrp ` W ) ) |
| 31 |
7
|
3ad2ant1 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> U e. S ) |
| 32 |
28 31
|
sseldd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> U e. ( SubGrp ` W ) ) |
| 33 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 34 |
33 3
|
lsmelval |
|- ( ( T e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( r e. ( T .(+) U ) <-> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) ) |
| 35 |
30 32 34
|
syl2anc |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( r e. ( T .(+) U ) <-> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) ) |
| 36 |
26 35
|
mpbid |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. y e. T E. z e. U r = ( y ( +g ` W ) z ) ) |
| 37 |
1 2
|
lssne0 |
|- ( T e. S -> ( T =/= { .0. } <-> E. q e. T q =/= .0. ) ) |
| 38 |
6 37
|
syl |
|- ( ph -> ( T =/= { .0. } <-> E. q e. T q =/= .0. ) ) |
| 39 |
9 38
|
mpbid |
|- ( ph -> E. q e. T q =/= .0. ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> E. q e. T q =/= .0. ) |
| 41 |
40
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> E. q e. T q =/= .0. ) |
| 42 |
41
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> E. q e. T q =/= .0. ) |
| 43 |
5
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> W e. LMod ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> W e. LMod ) |
| 45 |
44
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> W e. LMod ) |
| 46 |
6
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> T e. S ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> T e. S ) |
| 48 |
47
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> T e. S ) |
| 49 |
|
simpr2 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q e. T ) |
| 50 |
11 2
|
lssel |
|- ( ( T e. S /\ q e. T ) -> q e. ( Base ` W ) ) |
| 51 |
48 49 50
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q e. ( Base ` W ) ) |
| 52 |
|
simpr3 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> q =/= .0. ) |
| 53 |
11 12 1 4
|
lsatlspsn2 |
|- ( ( W e. LMod /\ q e. ( Base ` W ) /\ q =/= .0. ) -> ( ( LSpan ` W ) ` { q } ) e. A ) |
| 54 |
45 51 52 53
|
syl3anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) e. A ) |
| 55 |
2 12 45 48 49
|
ellspsn5 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) C_ T ) |
| 56 |
|
simpl3 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> r = ( y ( +g ` W ) z ) ) |
| 57 |
|
simpr1 |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> y = .0. ) |
| 58 |
57
|
oveq1d |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( y ( +g ` W ) z ) = ( .0. ( +g ` W ) z ) ) |
| 59 |
7
|
adantr |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> U e. S ) |
| 60 |
59
|
3ad2ant1 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> U e. S ) |
| 61 |
|
simp2r |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> z e. U ) |
| 62 |
11 2
|
lssel |
|- ( ( U e. S /\ z e. U ) -> z e. ( Base ` W ) ) |
| 63 |
60 61 62
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> z e. ( Base ` W ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> z e. ( Base ` W ) ) |
| 65 |
11 33 1
|
lmod0vlid |
|- ( ( W e. LMod /\ z e. ( Base ` W ) ) -> ( .0. ( +g ` W ) z ) = z ) |
| 66 |
45 64 65
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( .0. ( +g ` W ) z ) = z ) |
| 67 |
56 58 66
|
3eqtrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> r = z ) |
| 68 |
67
|
sneqd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> { r } = { z } ) |
| 69 |
68
|
fveq2d |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) = ( ( LSpan ` W ) ` { z } ) ) |
| 70 |
2 12 44 60 61
|
ellspsn5 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { z } ) C_ U ) |
| 71 |
70
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { z } ) C_ U ) |
| 72 |
69 71
|
eqsstrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) C_ U ) |
| 73 |
11 12
|
lspsnsubg |
|- ( ( W e. LMod /\ q e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) ) |
| 74 |
45 51 73
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) ) |
| 75 |
45 27
|
syl |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> S C_ ( SubGrp ` W ) ) |
| 76 |
60
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U e. S ) |
| 77 |
75 76
|
sseldd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U e. ( SubGrp ` W ) ) |
| 78 |
3
|
lsmub2 |
|- ( ( ( ( LSpan ` W ) ` { q } ) e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> U C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
| 79 |
74 77 78
|
syl2anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> U C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
| 80 |
72 79
|
sstrd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
| 81 |
|
sseq1 |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( p C_ T <-> ( ( LSpan ` W ) ` { q } ) C_ T ) ) |
| 82 |
|
oveq1 |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( p .(+) U ) = ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) |
| 83 |
82
|
sseq2d |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) |
| 84 |
81 83
|
anbi12d |
|- ( p = ( ( LSpan ` W ) ` { q } ) -> ( ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) <-> ( ( ( LSpan ` W ) ` { q } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) ) |
| 85 |
84
|
rspcev |
|- ( ( ( ( LSpan ` W ) ` { q } ) e. A /\ ( ( ( LSpan ` W ) ` { q } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { q } ) .(+) U ) ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 86 |
54 55 80 85
|
syl12anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ ( y = .0. /\ q e. T /\ q =/= .0. ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 87 |
86
|
3exp2 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( y = .0. -> ( q e. T -> ( q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) ) |
| 88 |
87
|
imp |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> ( q e. T -> ( q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) |
| 89 |
88
|
rexlimdv |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> ( E. q e. T q =/= .0. -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 90 |
42 89
|
mpd |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y = .0. ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 91 |
44
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> W e. LMod ) |
| 92 |
|
simp2l |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> y e. T ) |
| 93 |
11 2
|
lssel |
|- ( ( T e. S /\ y e. T ) -> y e. ( Base ` W ) ) |
| 94 |
47 92 93
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> y e. ( Base ` W ) ) |
| 95 |
94
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> y e. ( Base ` W ) ) |
| 96 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> y =/= .0. ) |
| 97 |
11 12 1 4
|
lsatlspsn2 |
|- ( ( W e. LMod /\ y e. ( Base ` W ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) e. A ) |
| 98 |
91 95 96 97
|
syl3anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) e. A ) |
| 99 |
2 12 44 47 92
|
ellspsn5 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) C_ T ) |
| 100 |
99
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { y } ) C_ T ) |
| 101 |
|
simp3 |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> r = ( y ( +g ` W ) z ) ) |
| 102 |
101
|
sneqd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> { r } = { ( y ( +g ` W ) z ) } ) |
| 103 |
102
|
fveq2d |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) = ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) ) |
| 104 |
11 33 12
|
lspvadd |
|- ( ( W e. LMod /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
| 105 |
44 94 63 104
|
syl3anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { ( y ( +g ` W ) z ) } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
| 106 |
103 105
|
eqsstrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( LSpan ` W ) ` { y , z } ) ) |
| 107 |
11 12 3 44 94 63
|
lsmpr |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y , z } ) = ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) ) |
| 108 |
106 107
|
sseqtrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) ) |
| 109 |
44 27
|
syl |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> S C_ ( SubGrp ` W ) ) |
| 110 |
11 2 12
|
lspsncl |
|- ( ( W e. LMod /\ y e. ( Base ` W ) ) -> ( ( LSpan ` W ) ` { y } ) e. S ) |
| 111 |
44 94 110
|
syl2anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) e. S ) |
| 112 |
109 111
|
sseldd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { y } ) e. ( SubGrp ` W ) ) |
| 113 |
109 60
|
sseldd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> U e. ( SubGrp ` W ) ) |
| 114 |
3
|
lsmless2 |
|- ( ( ( ( LSpan ` W ) ` { y } ) e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) /\ ( ( LSpan ` W ) ` { z } ) C_ U ) -> ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
| 115 |
112 113 70 114
|
syl3anc |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( ( LSpan ` W ) ` { y } ) .(+) ( ( LSpan ` W ) ` { z } ) ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
| 116 |
108 115
|
sstrd |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
| 117 |
116
|
adantr |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
| 118 |
|
sseq1 |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( p C_ T <-> ( ( LSpan ` W ) ` { y } ) C_ T ) ) |
| 119 |
|
oveq1 |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( p .(+) U ) = ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) |
| 120 |
119
|
sseq2d |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) |
| 121 |
118 120
|
anbi12d |
|- ( p = ( ( LSpan ` W ) ` { y } ) -> ( ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) <-> ( ( ( LSpan ` W ) ` { y } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) ) |
| 122 |
121
|
rspcev |
|- ( ( ( ( LSpan ` W ) ` { y } ) e. A /\ ( ( ( LSpan ` W ) ` { y } ) C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( ( ( LSpan ` W ) ` { y } ) .(+) U ) ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 123 |
98 100 117 122
|
syl12anc |
|- ( ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) /\ y =/= .0. ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 124 |
90 123
|
pm2.61dane |
|- ( ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) /\ ( y e. T /\ z e. U ) /\ r = ( y ( +g ` W ) z ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 125 |
124
|
3exp |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> ( ( y e. T /\ z e. U ) -> ( r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) ) |
| 126 |
125
|
rexlimdvv |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) ) -> ( E. y e. T E. z e. U r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 127 |
126
|
3adant3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( E. y e. T E. z e. U r = ( y ( +g ` W ) z ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 128 |
36 127
|
mpd |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 129 |
|
sseq1 |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( Q C_ ( p .(+) U ) <-> ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) |
| 130 |
129
|
anbi2d |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 131 |
130
|
rexbidv |
|- ( Q = ( ( LSpan ` W ) ` { r } ) -> ( E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 132 |
131
|
3ad2ant3 |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> ( E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) <-> E. p e. A ( p C_ T /\ ( ( LSpan ` W ) ` { r } ) C_ ( p .(+) U ) ) ) ) |
| 133 |
128 132
|
mpbird |
|- ( ( ph /\ r e. ( ( Base ` W ) \ { .0. } ) /\ Q = ( ( LSpan ` W ) ` { r } ) ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) |
| 134 |
133
|
3exp |
|- ( ph -> ( r e. ( ( Base ` W ) \ { .0. } ) -> ( Q = ( ( LSpan ` W ) ` { r } ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) ) ) |
| 135 |
134
|
rexlimdv |
|- ( ph -> ( E. r e. ( ( Base ` W ) \ { .0. } ) Q = ( ( LSpan ` W ) ` { r } ) -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) ) |
| 136 |
15 135
|
mpd |
|- ( ph -> E. p e. A ( p C_ T /\ Q C_ ( p .(+) U ) ) ) |