| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsat.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 2 |
|
lsmsat.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsmsat.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
lsmsat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
lsmsat.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lsmsat.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 7 |
|
lsmsat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
|
lsmsat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 9 |
|
lsmsat.n |
⊢ ( 𝜑 → 𝑇 ≠ { 0 } ) |
| 10 |
|
lsmsat.l |
⊢ ( 𝜑 → 𝑄 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 12 |
|
eqid |
⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) |
| 13 |
11 12 1 4
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) ) |
| 15 |
8 14
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) |
| 16 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) |
| 17 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑄 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 18 |
16 17
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 19 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑊 ∈ LMod ) |
| 20 |
2 3
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ∧ 𝑈 ∈ 𝑆 ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 21 |
5 6 7 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ 𝑆 ) |
| 23 |
|
eldifi |
⊢ ( 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → 𝑟 ∈ ( Base ‘ 𝑊 ) ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑟 ∈ ( Base ‘ 𝑊 ) ) |
| 25 |
11 2 12 19 22 24
|
ellspsn5b |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( 𝑟 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 26 |
18 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑟 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 27 |
2
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 28 |
19 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 29 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑇 ∈ 𝑆 ) |
| 30 |
28 29
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑈 ∈ 𝑆 ) |
| 32 |
28 31
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 33 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 34 |
33 3
|
lsmelval |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑟 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 35 |
30 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( 𝑟 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 36 |
26 35
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 37 |
1 2
|
lssne0 |
⊢ ( 𝑇 ∈ 𝑆 → ( 𝑇 ≠ { 0 } ↔ ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) ) |
| 38 |
6 37
|
syl |
⊢ ( 𝜑 → ( 𝑇 ≠ { 0 } ↔ ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) ) |
| 39 |
9 38
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 = 0 ) → ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 ) |
| 43 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
| 44 |
43
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ LMod ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑊 ∈ LMod ) |
| 46 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑇 ∈ 𝑆 ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑇 ∈ 𝑆 ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑇 ∈ 𝑆 ) |
| 49 |
|
simpr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑞 ∈ 𝑇 ) |
| 50 |
11 2
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑞 ∈ 𝑇 ) → 𝑞 ∈ ( Base ‘ 𝑊 ) ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑞 ∈ ( Base ‘ 𝑊 ) ) |
| 52 |
|
simpr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑞 ≠ 0 ) |
| 53 |
11 12 1 4
|
lsatlspsn2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ 𝑊 ) ∧ 𝑞 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ 𝐴 ) |
| 54 |
45 51 52 53
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ 𝐴 ) |
| 55 |
2 12 45 48 49
|
ellspsn5 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊆ 𝑇 ) |
| 56 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 57 |
|
simpr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑦 = 0 ) |
| 58 |
57
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 0 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 59 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → 𝑈 ∈ 𝑆 ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑈 ∈ 𝑆 ) |
| 61 |
|
simp2r |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ 𝑈 ) |
| 62 |
11 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 63 |
60 61 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑧 ∈ ( Base ‘ 𝑊 ) ) |
| 65 |
11 33 1
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( 0 ( +g ‘ 𝑊 ) 𝑧 ) = 𝑧 ) |
| 66 |
45 64 65
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( 0 ( +g ‘ 𝑊 ) 𝑧 ) = 𝑧 ) |
| 67 |
56 58 66
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑟 = 𝑧 ) |
| 68 |
67
|
sneqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → { 𝑟 } = { 𝑧 } ) |
| 69 |
68
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) |
| 70 |
2 12 44 60 61
|
ellspsn5 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 71 |
70
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 72 |
69 71
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ 𝑈 ) |
| 73 |
11 12
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑞 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 74 |
45 51 73
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 75 |
45 27
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 76 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑈 ∈ 𝑆 ) |
| 77 |
75 76
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 78 |
3
|
lsmub2 |
⊢ ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑈 ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) |
| 79 |
74 77 78
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → 𝑈 ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) |
| 80 |
72 79
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) |
| 81 |
|
sseq1 |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) → ( 𝑝 ⊆ 𝑇 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊆ 𝑇 ) ) |
| 82 |
|
oveq1 |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) → ( 𝑝 ⊕ 𝑈 ) = ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) |
| 83 |
82
|
sseq2d |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) ) |
| 84 |
81 83
|
anbi12d |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) → ( ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ↔ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) ) ) |
| 85 |
84
|
rspcev |
⊢ ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ∈ 𝐴 ∧ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑞 } ) ⊕ 𝑈 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 86 |
54 55 80 85
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ ( 𝑦 = 0 ∧ 𝑞 ∈ 𝑇 ∧ 𝑞 ≠ 0 ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 87 |
86
|
3exp2 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑦 = 0 → ( 𝑞 ∈ 𝑇 → ( 𝑞 ≠ 0 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) ) ) |
| 88 |
87
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 = 0 ) → ( 𝑞 ∈ 𝑇 → ( 𝑞 ≠ 0 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) ) |
| 89 |
88
|
rexlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 = 0 ) → ( ∃ 𝑞 ∈ 𝑇 𝑞 ≠ 0 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 90 |
42 89
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 = 0 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 91 |
44
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → 𝑊 ∈ LMod ) |
| 92 |
|
simp2l |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑇 ) |
| 93 |
11 2
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 94 |
47 92 93
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 96 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → 𝑦 ≠ 0 ) |
| 97 |
11 12 1 4
|
lsatlspsn2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ 𝐴 ) |
| 98 |
91 95 96 97
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ 𝐴 ) |
| 99 |
2 12 44 47 92
|
ellspsn5 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊆ 𝑇 ) |
| 100 |
99
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊆ 𝑇 ) |
| 101 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 102 |
101
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → { 𝑟 } = { ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) } ) |
| 103 |
102
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) = ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) } ) ) |
| 104 |
11 33 12
|
lspvadd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 , 𝑧 } ) ) |
| 105 |
44 94 63 104
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 , 𝑧 } ) ) |
| 106 |
103 105
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 , 𝑧 } ) ) |
| 107 |
11 12 3 44 94 63
|
lsmpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 , 𝑧 } ) = ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) ) |
| 108 |
106 107
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) ) |
| 109 |
44 27
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 110 |
11 2 12
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 111 |
44 94 110
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 112 |
109 111
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 113 |
109 60
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 114 |
3
|
lsmless2 |
⊢ ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ⊆ 𝑈 ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) |
| 115 |
112 113 70 114
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑧 } ) ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) |
| 116 |
108 115
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) |
| 117 |
116
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) |
| 118 |
|
sseq1 |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) → ( 𝑝 ⊆ 𝑇 ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊆ 𝑇 ) ) |
| 119 |
|
oveq1 |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) → ( 𝑝 ⊕ 𝑈 ) = ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) |
| 120 |
119
|
sseq2d |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) → ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) ) |
| 121 |
118 120
|
anbi12d |
⊢ ( 𝑝 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) → ( ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ↔ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) ) ) |
| 122 |
121
|
rspcev |
⊢ ( ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ∈ 𝐴 ∧ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( ( ( LSpan ‘ 𝑊 ) ‘ { 𝑦 } ) ⊕ 𝑈 ) ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 123 |
98 100 117 122
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑦 ≠ 0 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 124 |
90 123
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ∧ 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 125 |
124
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) → ( 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) ) |
| 126 |
125
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 127 |
126
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑟 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 128 |
36 127
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 129 |
|
sseq1 |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) → ( 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ↔ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 130 |
129
|
anbi2d |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) → ( ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ↔ ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 131 |
130
|
rexbidv |
⊢ ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 132 |
131
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 133 |
128 132
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) ∧ 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |
| 134 |
133
|
3exp |
⊢ ( 𝜑 → ( 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) → ( 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) ) |
| 135 |
134
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( ( Base ‘ 𝑊 ) ∖ { 0 } ) 𝑄 = ( ( LSpan ‘ 𝑊 ) ‘ { 𝑟 } ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) ) |
| 136 |
15 135
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑇 ∧ 𝑄 ⊆ ( 𝑝 ⊕ 𝑈 ) ) ) |