Step |
Hyp |
Ref |
Expression |
1 |
|
lsmsat.o |
|
2 |
|
lsmsat.s |
|
3 |
|
lsmsat.p |
|
4 |
|
lsmsat.a |
|
5 |
|
lsmsat.w |
|
6 |
|
lsmsat.t |
|
7 |
|
lsmsat.u |
|
8 |
|
lsmsat.q |
|
9 |
|
lsmsat.n |
|
10 |
|
lsmsat.l |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 12 1 4
|
islsat |
|
14 |
5 13
|
syl |
|
15 |
8 14
|
mpbid |
|
16 |
|
simp3 |
|
17 |
10
|
3ad2ant1 |
|
18 |
16 17
|
eqsstrrd |
|
19 |
5
|
3ad2ant1 |
|
20 |
2 3
|
lsmcl |
|
21 |
5 6 7 20
|
syl3anc |
|
22 |
21
|
3ad2ant1 |
|
23 |
|
eldifi |
|
24 |
23
|
3ad2ant2 |
|
25 |
11 2 12 19 22 24
|
lspsnel5 |
|
26 |
18 25
|
mpbird |
|
27 |
2
|
lsssssubg |
|
28 |
19 27
|
syl |
|
29 |
6
|
3ad2ant1 |
|
30 |
28 29
|
sseldd |
|
31 |
7
|
3ad2ant1 |
|
32 |
28 31
|
sseldd |
|
33 |
|
eqid |
|
34 |
33 3
|
lsmelval |
|
35 |
30 32 34
|
syl2anc |
|
36 |
26 35
|
mpbid |
|
37 |
1 2
|
lssne0 |
|
38 |
6 37
|
syl |
|
39 |
9 38
|
mpbid |
|
40 |
39
|
adantr |
|
41 |
40
|
3ad2ant1 |
|
42 |
41
|
adantr |
|
43 |
5
|
adantr |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
adantr |
|
46 |
6
|
adantr |
|
47 |
46
|
3ad2ant1 |
|
48 |
47
|
adantr |
|
49 |
|
simpr2 |
|
50 |
11 2
|
lssel |
|
51 |
48 49 50
|
syl2anc |
|
52 |
|
simpr3 |
|
53 |
11 12 1 4
|
lsatlspsn2 |
|
54 |
45 51 52 53
|
syl3anc |
|
55 |
2 12 45 48 49
|
lspsnel5a |
|
56 |
|
simpl3 |
|
57 |
|
simpr1 |
|
58 |
57
|
oveq1d |
|
59 |
7
|
adantr |
|
60 |
59
|
3ad2ant1 |
|
61 |
|
simp2r |
|
62 |
11 2
|
lssel |
|
63 |
60 61 62
|
syl2anc |
|
64 |
63
|
adantr |
|
65 |
11 33 1
|
lmod0vlid |
|
66 |
45 64 65
|
syl2anc |
|
67 |
56 58 66
|
3eqtrd |
|
68 |
67
|
sneqd |
|
69 |
68
|
fveq2d |
|
70 |
2 12 44 60 61
|
lspsnel5a |
|
71 |
70
|
adantr |
|
72 |
69 71
|
eqsstrd |
|
73 |
11 12
|
lspsnsubg |
|
74 |
45 51 73
|
syl2anc |
|
75 |
45 27
|
syl |
|
76 |
60
|
adantr |
|
77 |
75 76
|
sseldd |
|
78 |
3
|
lsmub2 |
|
79 |
74 77 78
|
syl2anc |
|
80 |
72 79
|
sstrd |
|
81 |
|
sseq1 |
|
82 |
|
oveq1 |
|
83 |
82
|
sseq2d |
|
84 |
81 83
|
anbi12d |
|
85 |
84
|
rspcev |
|
86 |
54 55 80 85
|
syl12anc |
|
87 |
86
|
3exp2 |
|
88 |
87
|
imp |
|
89 |
88
|
rexlimdv |
|
90 |
42 89
|
mpd |
|
91 |
44
|
adantr |
|
92 |
|
simp2l |
|
93 |
11 2
|
lssel |
|
94 |
47 92 93
|
syl2anc |
|
95 |
94
|
adantr |
|
96 |
|
simpr |
|
97 |
11 12 1 4
|
lsatlspsn2 |
|
98 |
91 95 96 97
|
syl3anc |
|
99 |
2 12 44 47 92
|
lspsnel5a |
|
100 |
99
|
adantr |
|
101 |
|
simp3 |
|
102 |
101
|
sneqd |
|
103 |
102
|
fveq2d |
|
104 |
11 33 12
|
lspvadd |
|
105 |
44 94 63 104
|
syl3anc |
|
106 |
103 105
|
eqsstrd |
|
107 |
11 12 3 44 94 63
|
lsmpr |
|
108 |
106 107
|
sseqtrd |
|
109 |
44 27
|
syl |
|
110 |
11 2 12
|
lspsncl |
|
111 |
44 94 110
|
syl2anc |
|
112 |
109 111
|
sseldd |
|
113 |
109 60
|
sseldd |
|
114 |
3
|
lsmless2 |
|
115 |
112 113 70 114
|
syl3anc |
|
116 |
108 115
|
sstrd |
|
117 |
116
|
adantr |
|
118 |
|
sseq1 |
|
119 |
|
oveq1 |
|
120 |
119
|
sseq2d |
|
121 |
118 120
|
anbi12d |
|
122 |
121
|
rspcev |
|
123 |
98 100 117 122
|
syl12anc |
|
124 |
90 123
|
pm2.61dane |
|
125 |
124
|
3exp |
|
126 |
125
|
rexlimdvv |
|
127 |
126
|
3adant3 |
|
128 |
36 127
|
mpd |
|
129 |
|
sseq1 |
|
130 |
129
|
anbi2d |
|
131 |
130
|
rexbidv |
|
132 |
131
|
3ad2ant3 |
|
133 |
128 132
|
mpbird |
|
134 |
133
|
3exp |
|
135 |
134
|
rexlimdv |
|
136 |
15 135
|
mpd |
|