Metamath Proof Explorer


Theorem elpaddatiN

Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l ˙=K
paddfval.j ˙=joinK
paddfval.a A=AtomsK
paddfval.p +˙=+𝑃K
Assertion elpaddatiN KLatXAQAXRX+˙QpXR˙p˙Q

Proof

Step Hyp Ref Expression
1 paddfval.l ˙=K
2 paddfval.j ˙=joinK
3 paddfval.a A=AtomsK
4 paddfval.p +˙=+𝑃K
5 1 2 3 4 elpaddat KLatXAQAXRX+˙QRApXR˙p˙Q
6 simpr RApXR˙p˙QpXR˙p˙Q
7 5 6 syl6bi KLatXAQAXRX+˙QpXR˙p˙Q
8 7 impr KLatXAQAXRX+˙QpXR˙p˙Q