Metamath Proof Explorer


Theorem elpaddatiN

Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l
|- .<_ = ( le ` K )
paddfval.j
|- .\/ = ( join ` K )
paddfval.a
|- A = ( Atoms ` K )
paddfval.p
|- .+ = ( +P ` K )
Assertion elpaddatiN
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( X =/= (/) /\ R e. ( X .+ { Q } ) ) ) -> E. p e. X R .<_ ( p .\/ Q ) )

Proof

Step Hyp Ref Expression
1 paddfval.l
 |-  .<_ = ( le ` K )
2 paddfval.j
 |-  .\/ = ( join ` K )
3 paddfval.a
 |-  A = ( Atoms ` K )
4 paddfval.p
 |-  .+ = ( +P ` K )
5 1 2 3 4 elpaddat
 |-  ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( R e. ( X .+ { Q } ) <-> ( R e. A /\ E. p e. X R .<_ ( p .\/ Q ) ) ) )
6 simpr
 |-  ( ( R e. A /\ E. p e. X R .<_ ( p .\/ Q ) ) -> E. p e. X R .<_ ( p .\/ Q ) )
7 5 6 syl6bi
 |-  ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( R e. ( X .+ { Q } ) -> E. p e. X R .<_ ( p .\/ Q ) ) )
8 7 impr
 |-  ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( X =/= (/) /\ R e. ( X .+ { Q } ) ) ) -> E. p e. X R .<_ ( p .\/ Q ) )