Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | elpaddatiN | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( X =/= (/) /\ R e. ( X .+ { Q } ) ) ) -> E. p e. X R .<_ ( p .\/ Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | 1 2 3 4 | elpaddat | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( R e. ( X .+ { Q } ) <-> ( R e. A /\ E. p e. X R .<_ ( p .\/ Q ) ) ) ) |
| 6 | simpr | |- ( ( R e. A /\ E. p e. X R .<_ ( p .\/ Q ) ) -> E. p e. X R .<_ ( p .\/ Q ) ) |
|
| 7 | 5 6 | biimtrdi | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( R e. ( X .+ { Q } ) -> E. p e. X R .<_ ( p .\/ Q ) ) ) |
| 8 | 7 | impr | |- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ ( X =/= (/) /\ R e. ( X .+ { Q } ) ) ) -> E. p e. X R .<_ ( p .\/ Q ) ) |