Metamath Proof Explorer


Theorem elpaddatiN

Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpaddatiN ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ) ) → ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 1 2 3 4 elpaddat ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑅𝐴 ∧ ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) ) ) )
6 simpr ( ( 𝑅𝐴 ∧ ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) ) → ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) )
7 5 6 syl6bi ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) → ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) ) )
8 7 impr ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ) ) → ∃ 𝑝𝑋 𝑅 ( 𝑝 𝑄 ) )