Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
1 2 3 4
|
elpaddat |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ↔ ( 𝑅 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) |
7 |
5 6
|
syl6bi |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑅 ∈ ( 𝑋 + { 𝑄 } ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) ) |
8 |
7
|
impr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑅 ∈ ( 𝑋 + { 𝑄 } ) ) ) → ∃ 𝑝 ∈ 𝑋 𝑅 ≤ ( 𝑝 ∨ 𝑄 ) ) |