Metamath Proof Explorer


Theorem elpadd2at

Description: Membership in a projective subspace sum of two points. (Contributed by NM, 29-Jan-2012)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpadd2at ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 simp1 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → 𝐾 ∈ Lat )
6 simp2 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → 𝑄𝐴 )
7 6 snssd ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → { 𝑄 } ⊆ 𝐴 )
8 simp3 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → 𝑅𝐴 )
9 snnzg ( 𝑄𝐴 → { 𝑄 } ≠ ∅ )
10 9 3ad2ant2 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → { 𝑄 } ≠ ∅ )
11 1 2 3 4 elpaddat ( ( ( 𝐾 ∈ Lat ∧ { 𝑄 } ⊆ 𝐴𝑅𝐴 ) ∧ { 𝑄 } ≠ ∅ ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ( 𝑟 𝑅 ) ) ) )
12 5 7 8 10 11 syl31anc ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ( 𝑟 𝑅 ) ) ) )
13 oveq1 ( 𝑟 = 𝑄 → ( 𝑟 𝑅 ) = ( 𝑄 𝑅 ) )
14 13 breq2d ( 𝑟 = 𝑄 → ( 𝑆 ( 𝑟 𝑅 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
15 14 rexsng ( 𝑄𝐴 → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ( 𝑟 𝑅 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
16 15 3ad2ant2 ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( ∃ 𝑟 ∈ { 𝑄 } 𝑆 ( 𝑟 𝑅 ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )
17 16 anbi2d ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( ( 𝑆𝐴 ∧ ∃ 𝑟 ∈ { 𝑄 } 𝑆 ( 𝑟 𝑅 ) ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )
18 12 17 bitrd ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )