Metamath Proof Explorer


Theorem elpadd2at2

Description: Membership in a projective subspace sum of two points. (Contributed by NM, 8-Mar-2012)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpadd2at2 ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 1 2 3 4 elpadd2at ( ( 𝐾 ∈ Lat ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )
6 5 3adant3r3 ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )
7 simpr3 ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → 𝑆𝐴 )
8 7 biantrurd ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → ( 𝑆 ( 𝑄 𝑅 ) ↔ ( 𝑆𝐴𝑆 ( 𝑄 𝑅 ) ) ) )
9 6 8 bitr4d ( ( 𝐾 ∈ Lat ∧ ( 𝑄𝐴𝑅𝐴𝑆𝐴 ) ) → ( 𝑆 ∈ ( { 𝑄 } + { 𝑅 } ) ↔ 𝑆 ( 𝑄 𝑅 ) ) )