| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddfval.l |
|- .<_ = ( le ` K ) |
| 2 |
|
paddfval.j |
|- .\/ = ( join ` K ) |
| 3 |
|
paddfval.a |
|- A = ( Atoms ` K ) |
| 4 |
|
paddfval.p |
|- .+ = ( +P ` K ) |
| 5 |
|
simpl1 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> K e. Lat ) |
| 6 |
|
simpl2 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X C_ A ) |
| 7 |
|
simpl3 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> Q e. A ) |
| 8 |
7
|
snssd |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } C_ A ) |
| 9 |
|
simpr |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X =/= (/) ) |
| 10 |
7
|
snn0d |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } =/= (/) ) |
| 11 |
1 2 3 4
|
elpaddn0 |
|- ( ( ( K e. Lat /\ X C_ A /\ { Q } C_ A ) /\ ( X =/= (/) /\ { Q } =/= (/) ) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
| 12 |
5 6 8 9 10 11
|
syl32anc |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
| 13 |
|
oveq2 |
|- ( r = Q -> ( p .\/ r ) = ( p .\/ Q ) ) |
| 14 |
13
|
breq2d |
|- ( r = Q -> ( S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 15 |
14
|
rexsng |
|- ( Q e. A -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 16 |
7 15
|
syl |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
| 17 |
16
|
rexbidv |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) <-> E. p e. X S .<_ ( p .\/ Q ) ) ) |
| 18 |
17
|
anbi2d |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |
| 19 |
12 18
|
bitrd |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |