Metamath Proof Explorer


Theorem lsatfixedN

Description: Show equality with the span of the sum of two vectors, one of which ( X ) is fixed in advance. Compare lspfixed . (Contributed by NM, 29-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lsatfixed.v 𝑉 = ( Base ‘ 𝑊 )
lsatfixed.p + = ( +g𝑊 )
lsatfixed.o 0 = ( 0g𝑊 )
lsatfixed.n 𝑁 = ( LSpan ‘ 𝑊 )
lsatfixed.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatfixed.w ( 𝜑𝑊 ∈ LVec )
lsatfixed.q ( 𝜑𝑄𝐴 )
lsatfixed.x ( 𝜑𝑋𝑉 )
lsatfixed.y ( 𝜑𝑌𝑉 )
lsatfixed.e ( 𝜑𝑄 ≠ ( 𝑁 ‘ { 𝑋 } ) )
lsatfixed.f ( 𝜑𝑄 ≠ ( 𝑁 ‘ { 𝑌 } ) )
lsatfixed.g ( 𝜑𝑄 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
Assertion lsatfixedN ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) )

Proof

Step Hyp Ref Expression
1 lsatfixed.v 𝑉 = ( Base ‘ 𝑊 )
2 lsatfixed.p + = ( +g𝑊 )
3 lsatfixed.o 0 = ( 0g𝑊 )
4 lsatfixed.n 𝑁 = ( LSpan ‘ 𝑊 )
5 lsatfixed.a 𝐴 = ( LSAtoms ‘ 𝑊 )
6 lsatfixed.w ( 𝜑𝑊 ∈ LVec )
7 lsatfixed.q ( 𝜑𝑄𝐴 )
8 lsatfixed.x ( 𝜑𝑋𝑉 )
9 lsatfixed.y ( 𝜑𝑌𝑉 )
10 lsatfixed.e ( 𝜑𝑄 ≠ ( 𝑁 ‘ { 𝑋 } ) )
11 lsatfixed.f ( 𝜑𝑄 ≠ ( 𝑁 ‘ { 𝑌 } ) )
12 lsatfixed.g ( 𝜑𝑄 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
13 1 4 3 5 islsat ( 𝑊 ∈ LVec → ( 𝑄𝐴 ↔ ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) )
14 6 13 syl ( 𝜑 → ( 𝑄𝐴 ↔ ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) )
15 7 14 mpbid ( 𝜑 → ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) )
16 6 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑊 ∈ LVec )
17 8 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑋𝑉 )
18 9 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑌𝑉 )
19 simp2 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
20 simp3 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 = ( 𝑁 ‘ { 𝑤 } ) )
21 20 eqcomd ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) = 𝑄 )
22 10 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ≠ ( 𝑁 ‘ { 𝑋 } ) )
23 21 22 eqnetrd ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
24 1 3 4 16 19 17 23 lspsnne1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 } ) )
25 11 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ≠ ( 𝑁 ‘ { 𝑌 } ) )
26 21 25 eqnetrd ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
27 1 3 4 16 19 18 26 lspsnne1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) )
28 12 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
29 21 28 eqsstrd ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
30 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
31 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
32 6 31 syl ( 𝜑𝑊 ∈ LMod )
33 32 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑊 ∈ LMod )
34 1 30 4 32 8 9 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
35 34 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
36 19 eldifad ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤𝑉 )
37 1 30 4 33 35 36 lspsnel5 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) )
38 29 37 mpbird ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
39 1 2 3 4 16 17 18 24 27 38 lspfixed ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) )
40 simpl1 ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝜑 )
41 40 6 syl ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑊 ∈ LVec )
42 simpl2 ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
43 40 32 syl ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑊 ∈ LMod )
44 40 8 syl ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑋𝑉 )
45 9 snssd ( 𝜑 → { 𝑌 } ⊆ 𝑉 )
46 1 4 lspssv ( ( 𝑊 ∈ LMod ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 )
47 32 45 46 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 )
48 47 ssdifssd ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ⊆ 𝑉 )
49 48 3ad2ant1 ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ⊆ 𝑉 )
50 49 sselda ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑧𝑉 )
51 1 2 lmodvacl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉 ) → ( 𝑋 + 𝑧 ) ∈ 𝑉 )
52 43 44 50 51 syl3anc ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑋 + 𝑧 ) ∈ 𝑉 )
53 1 3 4 41 42 52 lspsncmp ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
54 1 30 4 lspsncl ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑧 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ∈ ( LSubSp ‘ 𝑊 ) )
55 43 52 54 syl2anc ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ∈ ( LSubSp ‘ 𝑊 ) )
56 42 eldifad ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑤𝑉 )
57 1 30 4 43 55 56 lspsnel5 ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
58 simpl3 ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑄 = ( 𝑁 ‘ { 𝑤 } ) )
59 58 eqeq1d ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
60 53 57 59 3bitr4rd ( ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
61 60 rexbidva ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
62 39 61 mpbird ( ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) )
63 62 rexlimdv3a ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) )
64 15 63 mpd ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) )