| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatfixed.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsatfixed.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lsatfixed.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lsatfixed.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lsatfixed.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 6 |
|
lsatfixed.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lsatfixed.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 8 |
|
lsatfixed.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
lsatfixed.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
|
lsatfixed.e |
⊢ ( 𝜑 → 𝑄 ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 11 |
|
lsatfixed.f |
⊢ ( 𝜑 → 𝑄 ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 |
|
lsatfixed.g |
⊢ ( 𝜑 → 𝑄 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 13 |
1 4 3 5
|
islsat |
⊢ ( 𝑊 ∈ LVec → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ) |
| 15 |
7 14
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) |
| 16 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑊 ∈ LVec ) |
| 17 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑋 ∈ 𝑉 ) |
| 18 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑌 ∈ 𝑉 ) |
| 19 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) = 𝑄 ) |
| 22 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 23 |
21 22
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
| 24 |
1 3 4 16 19 17 23
|
lspsnne1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 25 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 26 |
21 25
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 27 |
1 3 4 16 19 18 26
|
lspsnne1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 28 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑄 ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 29 |
21 28
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 30 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 31 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 32 |
6 31
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑊 ∈ LMod ) |
| 34 |
1 30 4 32 8 9
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 36 |
19
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤 ∈ 𝑉 ) |
| 37 |
1 30 4 33 35 36
|
ellspsn5b |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 38 |
29 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 39 |
1 2 3 4 16 17 18 24 27 38
|
lspfixed |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) |
| 40 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝜑 ) |
| 41 |
40 6
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑊 ∈ LVec ) |
| 42 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 43 |
40 32
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑊 ∈ LMod ) |
| 44 |
40 8
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑋 ∈ 𝑉 ) |
| 45 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝑉 ) |
| 46 |
1 4
|
lspssv |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑌 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 47 |
32 45 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ 𝑉 ) |
| 48 |
47
|
ssdifssd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ⊆ 𝑉 ) |
| 49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ⊆ 𝑉 ) |
| 50 |
49
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑧 ∈ 𝑉 ) |
| 51 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑋 + 𝑧 ) ∈ 𝑉 ) |
| 52 |
43 44 50 51
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑋 + 𝑧 ) ∈ 𝑉 ) |
| 53 |
1 3 4 41 42 52
|
lspsncmp |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 54 |
1 30 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 + 𝑧 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 55 |
43 52 54
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 56 |
42
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑤 ∈ 𝑉 ) |
| 57 |
1 30 4 43 55 56
|
ellspsn5b |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 58 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ( 𝑁 ‘ { 𝑤 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 60 |
53 57 59
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) ∧ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) ) → ( 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 61 |
60
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ( ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ↔ ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑤 ∈ ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 62 |
39 61
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ∧ 𝑄 = ( 𝑁 ‘ { 𝑤 } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) |
| 63 |
62
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝑉 ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { 𝑤 } ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) ) |
| 64 |
15 63
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑌 } ) ∖ { 0 } ) 𝑄 = ( 𝑁 ‘ { ( 𝑋 + 𝑧 ) } ) ) |