Step |
Hyp |
Ref |
Expression |
1 |
|
lspfixed.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspfixed.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lspfixed.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lspfixed.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
5 |
|
lspfixed.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
lspfixed.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
lspfixed.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
8 |
|
lspfixed.e |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
9 |
|
lspfixed.f |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
10 |
|
lspfixed.g |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
15 |
5 14
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
16 |
1 2 11 12 13 4 15 6 7
|
lspprel |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
17 |
10 16
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
18 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LMod ) |
19 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
20 |
1 19 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
21 |
15 7 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
23 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑊 ∈ LVec ) |
24 |
11
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
26 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
28 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
31 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝜑 ) |
32 |
31 15
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
33 |
31 6
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑌 ∈ 𝑉 ) |
34 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
35 |
1 11 13 34 3
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
36 |
32 33 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
37 |
30 36
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 0 ) |
38 |
37
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
39 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
40 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ 𝑉 ) |
41 |
1 11 13 12
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
42 |
18 39 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) |
44 |
1 2 3
|
lmod0vlid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
45 |
32 43 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 0 + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
46 |
28 38 45
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
47 |
31 21
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
48 |
|
simpl2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
49 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
50 |
15 7 49
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
51 |
31 50
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
52 |
11 13 12 19
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
53 |
32 47 48 51 52
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
54 |
46 53
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
55 |
54
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) |
56 |
55
|
necon3bd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 } ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
57 |
27 56
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
58 |
|
eqid |
⊢ ( invr ‘ ( Scalar ‘ 𝑊 ) ) = ( invr ‘ ( Scalar ‘ 𝑊 ) ) |
59 |
12 34 58
|
drnginvrcl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
60 |
25 26 57 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
61 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
62 |
18 22 39 61 52
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
63 |
11 13 12 19
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
64 |
18 22 60 62 63
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ) |
65 |
12 34 58
|
drnginvrn0 |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
66 |
25 26 57 65
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
67 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
68 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
69 |
|
oveq1 |
⊢ ( 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) |
70 |
1 11 13 34 3
|
lmod0vs |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
71 |
18 40 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
72 |
69 71
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) = 0 ) |
73 |
72
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) ) |
74 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ 𝑉 ) |
75 |
1 11 13 12
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
76 |
18 26 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
77 |
1 2 3
|
lmod0vrid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
78 |
18 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
79 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + 0 ) = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
80 |
68 73 79
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
81 |
1 19 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
82 |
15 6 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
83 |
82
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
84 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
85 |
15 6 84
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
86 |
85
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
87 |
11 13 12 19
|
lssvscl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
88 |
18 83 26 86 87
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
89 |
88
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
90 |
80 89
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
91 |
90
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
92 |
91
|
necon3bd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
93 |
67 92
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
94 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝜑 ) |
95 |
94 10
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
96 |
|
preq2 |
⊢ ( 𝑍 = 0 → { 𝑌 , 𝑍 } = { 𝑌 , 0 } ) |
97 |
96
|
fveq2d |
⊢ ( 𝑍 = 0 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑌 , 0 } ) ) |
98 |
1 3 4 18 74
|
lsppr0 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { 𝑌 , 0 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
99 |
97 98
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
100 |
95 99
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ∧ 𝑍 = 0 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
101 |
100
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑍 = 0 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
102 |
101
|
necon3bd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑍 ≠ 0 ) ) |
103 |
67 102
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑍 ≠ 0 ) |
104 |
1 13 11 12 34 3 23 39 40
|
lvecvsn0 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ↔ ( 𝑙 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑍 ≠ 0 ) ) ) |
105 |
93 103 104
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ) |
106 |
1 13 11 12 34 3 23 60 42
|
lvecvsn0 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ↔ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ≠ 0 ) ) ) |
107 |
66 105 106
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ) |
108 |
|
eldifsn |
⊢ ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ↔ ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { 𝑍 } ) ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ≠ 0 ) ) |
109 |
64 107 108
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ) |
110 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) |
111 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
112 |
18 76 42 111
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) |
113 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
114 |
18 112 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
115 |
110 114
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
116 |
1 11 13 12 34 4
|
lspsnvs |
⊢ ( ( 𝑊 ∈ LVec ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
117 |
23 60 66 112 116
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) ) |
118 |
1 2 11 13 12
|
lmodvsdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ∧ ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ∈ 𝑉 ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
119 |
18 60 76 42 118
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
120 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
121 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
122 |
12 34 120 121 58
|
drnginvrl |
⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ DivRing ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
123 |
25 26 57 122
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
124 |
123
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
125 |
1 11 13 12 120
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
126 |
18 60 26 74 125
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑘 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
127 |
1 11 13 121
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
128 |
18 74 127
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = 𝑌 ) |
129 |
124 126 128
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = 𝑌 ) |
130 |
129
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
131 |
119 130
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
132 |
131
|
sneqd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } = { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) |
133 |
132
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
134 |
117 133
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ( 𝑁 ‘ { ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
135 |
115 134
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
136 |
|
oveq2 |
⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑌 + 𝑧 ) = ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) ) |
137 |
136
|
sneqd |
⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → { ( 𝑌 + 𝑧 ) } = { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) |
138 |
137
|
fveq2d |
⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) = ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) |
139 |
138
|
eleq2d |
⊢ ( 𝑧 = ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ( 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) ) |
140 |
139
|
rspcev |
⊢ ( ( ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) ∧ 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + ( ( ( invr ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑘 ) ( ·𝑠 ‘ 𝑊 ) ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) } ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |
141 |
109 135 140
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |
142 |
141
|
3exp |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) ) ) |
143 |
142
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑋 = ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑌 ) + ( 𝑙 ( ·𝑠 ‘ 𝑊 ) 𝑍 ) ) → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) ) |
144 |
17 143
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑁 ‘ { 𝑍 } ) ∖ { 0 } ) 𝑋 ∈ ( 𝑁 ‘ { ( 𝑌 + 𝑧 ) } ) ) |