| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatfixed.v |
|- V = ( Base ` W ) |
| 2 |
|
lsatfixed.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lsatfixed.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
lsatfixed.n |
|- N = ( LSpan ` W ) |
| 5 |
|
lsatfixed.a |
|- A = ( LSAtoms ` W ) |
| 6 |
|
lsatfixed.w |
|- ( ph -> W e. LVec ) |
| 7 |
|
lsatfixed.q |
|- ( ph -> Q e. A ) |
| 8 |
|
lsatfixed.x |
|- ( ph -> X e. V ) |
| 9 |
|
lsatfixed.y |
|- ( ph -> Y e. V ) |
| 10 |
|
lsatfixed.e |
|- ( ph -> Q =/= ( N ` { X } ) ) |
| 11 |
|
lsatfixed.f |
|- ( ph -> Q =/= ( N ` { Y } ) ) |
| 12 |
|
lsatfixed.g |
|- ( ph -> Q C_ ( N ` { X , Y } ) ) |
| 13 |
1 4 3 5
|
islsat |
|- ( W e. LVec -> ( Q e. A <-> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) ) |
| 14 |
6 13
|
syl |
|- ( ph -> ( Q e. A <-> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) ) |
| 15 |
7 14
|
mpbid |
|- ( ph -> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) |
| 16 |
6
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> W e. LVec ) |
| 17 |
8
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> X e. V ) |
| 18 |
9
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Y e. V ) |
| 19 |
|
simp2 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. ( V \ { .0. } ) ) |
| 20 |
|
simp3 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q = ( N ` { w } ) ) |
| 21 |
20
|
eqcomd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) = Q ) |
| 22 |
10
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q =/= ( N ` { X } ) ) |
| 23 |
21 22
|
eqnetrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) =/= ( N ` { X } ) ) |
| 24 |
1 3 4 16 19 17 23
|
lspsnne1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> -. w e. ( N ` { X } ) ) |
| 25 |
11
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q =/= ( N ` { Y } ) ) |
| 26 |
21 25
|
eqnetrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) =/= ( N ` { Y } ) ) |
| 27 |
1 3 4 16 19 18 26
|
lspsnne1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> -. w e. ( N ` { Y } ) ) |
| 28 |
12
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q C_ ( N ` { X , Y } ) ) |
| 29 |
21 28
|
eqsstrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) C_ ( N ` { X , Y } ) ) |
| 30 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 31 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 32 |
6 31
|
syl |
|- ( ph -> W e. LMod ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> W e. LMod ) |
| 34 |
1 30 4 32 8 9
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 36 |
19
|
eldifad |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. V ) |
| 37 |
1 30 4 33 35 36
|
ellspsn5b |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( w e. ( N ` { X , Y } ) <-> ( N ` { w } ) C_ ( N ` { X , Y } ) ) ) |
| 38 |
29 37
|
mpbird |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. ( N ` { X , Y } ) ) |
| 39 |
1 2 3 4 16 17 18 24 27 38
|
lspfixed |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) w e. ( N ` { ( X .+ z ) } ) ) |
| 40 |
|
simpl1 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ph ) |
| 41 |
40 6
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> W e. LVec ) |
| 42 |
|
simpl2 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> w e. ( V \ { .0. } ) ) |
| 43 |
40 32
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> W e. LMod ) |
| 44 |
40 8
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> X e. V ) |
| 45 |
9
|
snssd |
|- ( ph -> { Y } C_ V ) |
| 46 |
1 4
|
lspssv |
|- ( ( W e. LMod /\ { Y } C_ V ) -> ( N ` { Y } ) C_ V ) |
| 47 |
32 45 46
|
syl2anc |
|- ( ph -> ( N ` { Y } ) C_ V ) |
| 48 |
47
|
ssdifssd |
|- ( ph -> ( ( N ` { Y } ) \ { .0. } ) C_ V ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( ( N ` { Y } ) \ { .0. } ) C_ V ) |
| 50 |
49
|
sselda |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> z e. V ) |
| 51 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ X e. V /\ z e. V ) -> ( X .+ z ) e. V ) |
| 52 |
43 44 50 51
|
syl3anc |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( X .+ z ) e. V ) |
| 53 |
1 3 4 41 42 52
|
lspsncmp |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( ( N ` { w } ) C_ ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) = ( N ` { ( X .+ z ) } ) ) ) |
| 54 |
1 30 4
|
lspsncl |
|- ( ( W e. LMod /\ ( X .+ z ) e. V ) -> ( N ` { ( X .+ z ) } ) e. ( LSubSp ` W ) ) |
| 55 |
43 52 54
|
syl2anc |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( N ` { ( X .+ z ) } ) e. ( LSubSp ` W ) ) |
| 56 |
42
|
eldifad |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> w e. V ) |
| 57 |
1 30 4 43 55 56
|
ellspsn5b |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( w e. ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) C_ ( N ` { ( X .+ z ) } ) ) ) |
| 58 |
|
simpl3 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> Q = ( N ` { w } ) ) |
| 59 |
58
|
eqeq1d |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( Q = ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) = ( N ` { ( X .+ z ) } ) ) ) |
| 60 |
53 57 59
|
3bitr4rd |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( Q = ( N ` { ( X .+ z ) } ) <-> w e. ( N ` { ( X .+ z ) } ) ) ) |
| 61 |
60
|
rexbidva |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) <-> E. z e. ( ( N ` { Y } ) \ { .0. } ) w e. ( N ` { ( X .+ z ) } ) ) ) |
| 62 |
39 61
|
mpbird |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) |
| 63 |
62
|
rexlimdv3a |
|- ( ph -> ( E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) ) |
| 64 |
15 63
|
mpd |
|- ( ph -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) |