Step |
Hyp |
Ref |
Expression |
1 |
|
lsatfixed.v |
|- V = ( Base ` W ) |
2 |
|
lsatfixed.p |
|- .+ = ( +g ` W ) |
3 |
|
lsatfixed.o |
|- .0. = ( 0g ` W ) |
4 |
|
lsatfixed.n |
|- N = ( LSpan ` W ) |
5 |
|
lsatfixed.a |
|- A = ( LSAtoms ` W ) |
6 |
|
lsatfixed.w |
|- ( ph -> W e. LVec ) |
7 |
|
lsatfixed.q |
|- ( ph -> Q e. A ) |
8 |
|
lsatfixed.x |
|- ( ph -> X e. V ) |
9 |
|
lsatfixed.y |
|- ( ph -> Y e. V ) |
10 |
|
lsatfixed.e |
|- ( ph -> Q =/= ( N ` { X } ) ) |
11 |
|
lsatfixed.f |
|- ( ph -> Q =/= ( N ` { Y } ) ) |
12 |
|
lsatfixed.g |
|- ( ph -> Q C_ ( N ` { X , Y } ) ) |
13 |
1 4 3 5
|
islsat |
|- ( W e. LVec -> ( Q e. A <-> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) ) |
14 |
6 13
|
syl |
|- ( ph -> ( Q e. A <-> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) ) |
15 |
7 14
|
mpbid |
|- ( ph -> E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) ) |
16 |
6
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> W e. LVec ) |
17 |
8
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> X e. V ) |
18 |
9
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Y e. V ) |
19 |
|
simp2 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. ( V \ { .0. } ) ) |
20 |
|
simp3 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q = ( N ` { w } ) ) |
21 |
20
|
eqcomd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) = Q ) |
22 |
10
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q =/= ( N ` { X } ) ) |
23 |
21 22
|
eqnetrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) =/= ( N ` { X } ) ) |
24 |
1 3 4 16 19 17 23
|
lspsnne1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> -. w e. ( N ` { X } ) ) |
25 |
11
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q =/= ( N ` { Y } ) ) |
26 |
21 25
|
eqnetrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) =/= ( N ` { Y } ) ) |
27 |
1 3 4 16 19 18 26
|
lspsnne1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> -. w e. ( N ` { Y } ) ) |
28 |
12
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> Q C_ ( N ` { X , Y } ) ) |
29 |
21 28
|
eqsstrd |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { w } ) C_ ( N ` { X , Y } ) ) |
30 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
31 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
32 |
6 31
|
syl |
|- ( ph -> W e. LMod ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> W e. LMod ) |
34 |
1 30 4 32 8 9
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
35 |
34
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
36 |
19
|
eldifad |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. V ) |
37 |
1 30 4 33 35 36
|
lspsnel5 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( w e. ( N ` { X , Y } ) <-> ( N ` { w } ) C_ ( N ` { X , Y } ) ) ) |
38 |
29 37
|
mpbird |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> w e. ( N ` { X , Y } ) ) |
39 |
1 2 3 4 16 17 18 24 27 38
|
lspfixed |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) w e. ( N ` { ( X .+ z ) } ) ) |
40 |
|
simpl1 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ph ) |
41 |
40 6
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> W e. LVec ) |
42 |
|
simpl2 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> w e. ( V \ { .0. } ) ) |
43 |
40 32
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> W e. LMod ) |
44 |
40 8
|
syl |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> X e. V ) |
45 |
9
|
snssd |
|- ( ph -> { Y } C_ V ) |
46 |
1 4
|
lspssv |
|- ( ( W e. LMod /\ { Y } C_ V ) -> ( N ` { Y } ) C_ V ) |
47 |
32 45 46
|
syl2anc |
|- ( ph -> ( N ` { Y } ) C_ V ) |
48 |
47
|
ssdifssd |
|- ( ph -> ( ( N ` { Y } ) \ { .0. } ) C_ V ) |
49 |
48
|
3ad2ant1 |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( ( N ` { Y } ) \ { .0. } ) C_ V ) |
50 |
49
|
sselda |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> z e. V ) |
51 |
1 2
|
lmodvacl |
|- ( ( W e. LMod /\ X e. V /\ z e. V ) -> ( X .+ z ) e. V ) |
52 |
43 44 50 51
|
syl3anc |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( X .+ z ) e. V ) |
53 |
1 3 4 41 42 52
|
lspsncmp |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( ( N ` { w } ) C_ ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) = ( N ` { ( X .+ z ) } ) ) ) |
54 |
1 30 4
|
lspsncl |
|- ( ( W e. LMod /\ ( X .+ z ) e. V ) -> ( N ` { ( X .+ z ) } ) e. ( LSubSp ` W ) ) |
55 |
43 52 54
|
syl2anc |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( N ` { ( X .+ z ) } ) e. ( LSubSp ` W ) ) |
56 |
42
|
eldifad |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> w e. V ) |
57 |
1 30 4 43 55 56
|
lspsnel5 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( w e. ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) C_ ( N ` { ( X .+ z ) } ) ) ) |
58 |
|
simpl3 |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> Q = ( N ` { w } ) ) |
59 |
58
|
eqeq1d |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( Q = ( N ` { ( X .+ z ) } ) <-> ( N ` { w } ) = ( N ` { ( X .+ z ) } ) ) ) |
60 |
53 57 59
|
3bitr4rd |
|- ( ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) /\ z e. ( ( N ` { Y } ) \ { .0. } ) ) -> ( Q = ( N ` { ( X .+ z ) } ) <-> w e. ( N ` { ( X .+ z ) } ) ) ) |
61 |
60
|
rexbidva |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> ( E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) <-> E. z e. ( ( N ` { Y } ) \ { .0. } ) w e. ( N ` { ( X .+ z ) } ) ) ) |
62 |
39 61
|
mpbird |
|- ( ( ph /\ w e. ( V \ { .0. } ) /\ Q = ( N ` { w } ) ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) |
63 |
62
|
rexlimdv3a |
|- ( ph -> ( E. w e. ( V \ { .0. } ) Q = ( N ` { w } ) -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) ) |
64 |
15 63
|
mpd |
|- ( ph -> E. z e. ( ( N ` { Y } ) \ { .0. } ) Q = ( N ` { ( X .+ z ) } ) ) |