Metamath Proof Explorer


Theorem dochexmidlem4

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidlem1.p = ( LSSum ‘ 𝑈 )
dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidlem1.x ( 𝜑𝑋𝑆 )
dochexmidlem4.pp ( 𝜑𝑝𝐴 )
dochexmidlem4.qq ( 𝜑𝑞𝐴 )
dochexmidlem4.z 0 = ( 0g𝑈 )
dochexmidlem4.m 𝑀 = ( 𝑋 𝑝 )
dochexmidlem4.xn ( 𝜑𝑋 ≠ { 0 } )
dochexmidlem4.pl ( 𝜑𝑞 ⊆ ( ( 𝑋 ) ∩ 𝑀 ) )
Assertion dochexmidlem4 ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidlem1.p = ( LSSum ‘ 𝑈 )
8 dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 dochexmidlem1.x ( 𝜑𝑋𝑆 )
11 dochexmidlem4.pp ( 𝜑𝑝𝐴 )
12 dochexmidlem4.qq ( 𝜑𝑞𝐴 )
13 dochexmidlem4.z 0 = ( 0g𝑈 )
14 dochexmidlem4.m 𝑀 = ( 𝑋 𝑝 )
15 dochexmidlem4.xn ( 𝜑𝑋 ≠ { 0 } )
16 dochexmidlem4.pl ( 𝜑𝑞 ⊆ ( ( 𝑋 ) ∩ 𝑀 ) )
17 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 5 8 17 11 lsatlssel ( 𝜑𝑝𝑆 )
19 inss2 ( ( 𝑋 ) ∩ 𝑀 ) ⊆ 𝑀
20 16 19 sstrdi ( 𝜑𝑞𝑀 )
21 20 14 sseqtrdi ( 𝜑𝑞 ⊆ ( 𝑋 𝑝 ) )
22 13 5 7 8 17 10 18 12 15 21 lsmsat ( 𝜑 → ∃ 𝑟𝐴 ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) )
23 9 3ad2ant1 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
24 10 3ad2ant1 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑋𝑆 )
25 11 3ad2ant1 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑝𝐴 )
26 12 3ad2ant1 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑞𝐴 )
27 simp2 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑟𝐴 )
28 inss1 ( ( 𝑋 ) ∩ 𝑀 ) ⊆ ( 𝑋 )
29 16 28 sstrdi ( 𝜑𝑞 ⊆ ( 𝑋 ) )
30 29 3ad2ant1 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑞 ⊆ ( 𝑋 ) )
31 simp3l ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑟𝑋 )
32 simp3r ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑞 ⊆ ( 𝑟 𝑝 ) )
33 1 2 3 4 5 6 7 8 23 24 25 26 27 30 31 32 dochexmidlem3 ( ( 𝜑𝑟𝐴 ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) ) → 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )
34 33 rexlimdv3a ( 𝜑 → ( ∃ 𝑟𝐴 ( 𝑟𝑋𝑞 ⊆ ( 𝑟 𝑝 ) ) → 𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) ) )
35 22 34 mpd ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )