Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem4.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem4.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
13 |
|
dochexmidlem4.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
14 |
|
dochexmidlem4.m |
⊢ 𝑀 = ( 𝑋 ⊕ 𝑝 ) |
15 |
|
dochexmidlem4.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
16 |
|
dochexmidlem4.pl |
⊢ ( 𝜑 → 𝑞 ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ) |
17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
5 8 17 11
|
lsatlssel |
⊢ ( 𝜑 → 𝑝 ∈ 𝑆 ) |
19 |
|
inss2 |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ⊆ 𝑀 |
20 |
16 19
|
sstrdi |
⊢ ( 𝜑 → 𝑞 ⊆ 𝑀 ) |
21 |
20 14
|
sseqtrdi |
⊢ ( 𝜑 → 𝑞 ⊆ ( 𝑋 ⊕ 𝑝 ) ) |
22 |
13 5 7 8 17 10 18 12 15 21
|
lsmsat |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) |
23 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑋 ∈ 𝑆 ) |
25 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑝 ∈ 𝐴 ) |
26 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑞 ∈ 𝐴 ) |
27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑟 ∈ 𝐴 ) |
28 |
|
inss1 |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑀 ) ⊆ ( ⊥ ‘ 𝑋 ) |
29 |
16 28
|
sstrdi |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
31 |
|
simp3l |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑟 ⊆ 𝑋 ) |
32 |
|
simp3r |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) |
33 |
1 2 3 4 5 6 7 8 23 24 25 26 27 30 31 32
|
dochexmidlem3 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
34 |
33
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝐴 ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
35 |
22 34
|
mpd |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |