Metamath Proof Explorer


Theorem dochexmidlem5

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem5.pp φ p A
dochexmidlem5.z 0 ˙ = 0 U
dochexmidlem5.m M = X ˙ p
dochexmidlem5.xn φ X 0 ˙
dochexmidlem5.pl φ ¬ p X ˙ ˙ X
Assertion dochexmidlem5 φ ˙ X M = 0 ˙

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem5.pp φ p A
12 dochexmidlem5.z 0 ˙ = 0 U
13 dochexmidlem5.m M = X ˙ p
14 dochexmidlem5.xn φ X 0 ˙
15 dochexmidlem5.pl φ ¬ p X ˙ ˙ X
16 1 3 9 dvhlmod φ U LMod
17 16 adantr φ ˙ X M 0 ˙ U LMod
18 4 5 lssss X S X V
19 10 18 syl φ X V
20 1 3 4 5 2 dochlss K HL W H X V ˙ X S
21 9 19 20 syl2anc φ ˙ X S
22 5 8 16 11 lsatlssel φ p S
23 5 7 lsmcl U LMod X S p S X ˙ p S
24 16 10 22 23 syl3anc φ X ˙ p S
25 13 24 eqeltrid φ M S
26 5 lssincl U LMod ˙ X S M S ˙ X M S
27 16 21 25 26 syl3anc φ ˙ X M S
28 27 adantr φ ˙ X M 0 ˙ ˙ X M S
29 simpr φ ˙ X M 0 ˙ ˙ X M 0 ˙
30 5 12 8 17 28 29 lssatomic φ ˙ X M 0 ˙ q A q ˙ X M
31 30 ex φ ˙ X M 0 ˙ q A q ˙ X M
32 9 3ad2ant1 φ q A q ˙ X M K HL W H
33 10 3ad2ant1 φ q A q ˙ X M X S
34 11 3ad2ant1 φ q A q ˙ X M p A
35 simp2 φ q A q ˙ X M q A
36 14 3ad2ant1 φ q A q ˙ X M X 0 ˙
37 simp3 φ q A q ˙ X M q ˙ X M
38 1 2 3 4 5 6 7 8 32 33 34 35 12 13 36 37 dochexmidlem4 φ q A q ˙ X M p X ˙ ˙ X
39 38 rexlimdv3a φ q A q ˙ X M p X ˙ ˙ X
40 31 39 syld φ ˙ X M 0 ˙ p X ˙ ˙ X
41 40 necon1bd φ ¬ p X ˙ ˙ X ˙ X M = 0 ˙
42 15 41 mpd φ ˙ X M = 0 ˙