| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
|
| 2 |
|
dochexmidlem1.o |
|
| 3 |
|
dochexmidlem1.u |
|
| 4 |
|
dochexmidlem1.v |
|
| 5 |
|
dochexmidlem1.s |
|
| 6 |
|
dochexmidlem1.n |
|
| 7 |
|
dochexmidlem1.p |
|
| 8 |
|
dochexmidlem1.a |
|
| 9 |
|
dochexmidlem1.k |
|
| 10 |
|
dochexmidlem1.x |
|
| 11 |
|
dochexmidlem6.pp |
|
| 12 |
|
dochexmidlem6.z |
|
| 13 |
|
dochexmidlem6.m |
|
| 14 |
|
dochexmidlem6.xn |
|
| 15 |
|
dochexmidlem6.c |
|
| 16 |
|
dochexmidlem6.pl |
|
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
|
dochexmidlem5 |
|
| 18 |
17
|
fveq2d |
|
| 19 |
1 3 2 4 12
|
doch0 |
|
| 20 |
9 19
|
syl |
|
| 21 |
18 20
|
eqtrd |
|
| 22 |
21
|
ineq1d |
|
| 23 |
|
eqid |
|
| 24 |
4 5
|
lssss |
|
| 25 |
10 24
|
syl |
|
| 26 |
1 3 4 2
|
dochssv |
|
| 27 |
9 25 26
|
syl2anc |
|
| 28 |
1 23 3 4 2
|
dochcl |
|
| 29 |
9 27 28
|
syl2anc |
|
| 30 |
15 29
|
eqeltrrd |
|
| 31 |
1 23 3 7 8 9 30 11
|
dihsmatrn |
|
| 32 |
13 31
|
eqeltrid |
|
| 33 |
1 3 23 5
|
dihrnlss |
|
| 34 |
9 32 33
|
syl2anc |
|
| 35 |
1 3 9
|
dvhlmod |
|
| 36 |
5 8 35 11
|
lsatlssel |
|
| 37 |
5 7
|
lsmcl |
|
| 38 |
35 10 36 37
|
syl3anc |
|
| 39 |
4 5
|
lssss |
|
| 40 |
38 39
|
syl |
|
| 41 |
13 40
|
eqsstrid |
|
| 42 |
1 23 3 4 2 9 41
|
dochoccl |
|
| 43 |
32 42
|
mpbid |
|
| 44 |
5
|
lsssssubg |
|
| 45 |
35 44
|
syl |
|
| 46 |
45 10
|
sseldd |
|
| 47 |
45 36
|
sseldd |
|
| 48 |
7
|
lsmub1 |
|
| 49 |
46 47 48
|
syl2anc |
|
| 50 |
49 13
|
sseqtrrdi |
|
| 51 |
1 3 5 2 9 10 34 43 50
|
dihoml4 |
|
| 52 |
|
sseqin2 |
|
| 53 |
41 52
|
sylib |
|
| 54 |
22 51 53
|
3eqtr3rd |
|
| 55 |
54 15
|
eqtrd |
|