Metamath Proof Explorer


Theorem dochexmidlem6

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem6.pp φ p A
dochexmidlem6.z 0 ˙ = 0 U
dochexmidlem6.m M = X ˙ p
dochexmidlem6.xn φ X 0 ˙
dochexmidlem6.c φ ˙ ˙ X = X
dochexmidlem6.pl φ ¬ p X ˙ ˙ X
Assertion dochexmidlem6 φ M = X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem6.pp φ p A
12 dochexmidlem6.z 0 ˙ = 0 U
13 dochexmidlem6.m M = X ˙ p
14 dochexmidlem6.xn φ X 0 ˙
15 dochexmidlem6.c φ ˙ ˙ X = X
16 dochexmidlem6.pl φ ¬ p X ˙ ˙ X
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 dochexmidlem5 φ ˙ X M = 0 ˙
18 17 fveq2d φ ˙ ˙ X M = ˙ 0 ˙
19 1 3 2 4 12 doch0 K HL W H ˙ 0 ˙ = V
20 9 19 syl φ ˙ 0 ˙ = V
21 18 20 eqtrd φ ˙ ˙ X M = V
22 21 ineq1d φ ˙ ˙ X M M = V M
23 eqid DIsoH K W = DIsoH K W
24 4 5 lssss X S X V
25 10 24 syl φ X V
26 1 3 4 2 dochssv K HL W H X V ˙ X V
27 9 25 26 syl2anc φ ˙ X V
28 1 23 3 4 2 dochcl K HL W H ˙ X V ˙ ˙ X ran DIsoH K W
29 9 27 28 syl2anc φ ˙ ˙ X ran DIsoH K W
30 15 29 eqeltrrd φ X ran DIsoH K W
31 1 23 3 7 8 9 30 11 dihsmatrn φ X ˙ p ran DIsoH K W
32 13 31 eqeltrid φ M ran DIsoH K W
33 1 3 23 5 dihrnlss K HL W H M ran DIsoH K W M S
34 9 32 33 syl2anc φ M S
35 1 3 9 dvhlmod φ U LMod
36 5 8 35 11 lsatlssel φ p S
37 5 7 lsmcl U LMod X S p S X ˙ p S
38 35 10 36 37 syl3anc φ X ˙ p S
39 4 5 lssss X ˙ p S X ˙ p V
40 38 39 syl φ X ˙ p V
41 13 40 eqsstrid φ M V
42 1 23 3 4 2 9 41 dochoccl φ M ran DIsoH K W ˙ ˙ M = M
43 32 42 mpbid φ ˙ ˙ M = M
44 5 lsssssubg U LMod S SubGrp U
45 35 44 syl φ S SubGrp U
46 45 10 sseldd φ X SubGrp U
47 45 36 sseldd φ p SubGrp U
48 7 lsmub1 X SubGrp U p SubGrp U X X ˙ p
49 46 47 48 syl2anc φ X X ˙ p
50 49 13 sseqtrrdi φ X M
51 1 3 5 2 9 10 34 43 50 dihoml4 φ ˙ ˙ X M M = ˙ ˙ X
52 sseqin2 M V V M = M
53 41 52 sylib φ V M = M
54 22 51 53 3eqtr3rd φ M = ˙ ˙ X
55 54 15 eqtrd φ M = X