| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem8.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 12 |
|
dochexmidlem8.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
| 13 |
|
dochexmidlem8.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 14 |
|
nonconne |
⊢ ¬ ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) |
| 15 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 16 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
| 17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 18 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 19 |
9 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 20 |
5 7
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 21 |
15 10 19 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 22 |
4 5
|
lssss |
⊢ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
| 24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → 𝑈 ∈ LMod ) |
| 25 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 26 |
4 5
|
lss1 |
⊢ ( 𝑈 ∈ LMod → 𝑉 ∈ 𝑆 ) |
| 27 |
15 26
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ 𝑆 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → 𝑉 ∈ 𝑆 ) |
| 29 |
|
df-pss |
⊢ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ↔ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) |
| 30 |
29
|
biimpri |
⊢ ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ) |
| 32 |
5 8 24 25 28 31
|
lpssat |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 33 |
32
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 34 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 35 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑋 ∈ 𝑆 ) |
| 36 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑝 ∈ 𝐴 ) |
| 37 |
|
eqid |
⊢ ( 𝑋 ⊕ 𝑝 ) = ( 𝑋 ⊕ 𝑝 ) |
| 38 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑋 ≠ { 0 } ) |
| 39 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 40 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 41 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem6 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ⊕ 𝑝 ) = 𝑋 ) |
| 42 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem7 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ⊕ 𝑝 ) ≠ 𝑋 ) |
| 43 |
41 42
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) |
| 44 |
43
|
3adant3l |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) |
| 45 |
44
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
| 46 |
33 45
|
syld |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
| 47 |
23 46
|
mpand |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
| 48 |
47
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |
| 49 |
14 48
|
mpi |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |