Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem8.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
12 |
|
dochexmidlem8.xn |
⊢ ( 𝜑 → 𝑋 ≠ { 0 } ) |
13 |
|
dochexmidlem8.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
14 |
|
nonconne |
⊢ ¬ ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) |
15 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
18 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
19 |
9 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
20 |
5 7
|
lsmcl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
21 |
15 10 19 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
22 |
4 5
|
lssss |
⊢ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ) |
24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → 𝑈 ∈ LMod ) |
25 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
26 |
4 5
|
lss1 |
⊢ ( 𝑈 ∈ LMod → 𝑉 ∈ 𝑆 ) |
27 |
15 26
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ 𝑆 ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → 𝑉 ∈ 𝑆 ) |
29 |
|
df-pss |
⊢ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ↔ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) |
30 |
29
|
biimpri |
⊢ ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊊ 𝑉 ) |
32 |
5 8 24 25 28 31
|
lpssat |
⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
34 |
9
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
35 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑋 ∈ 𝑆 ) |
36 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑝 ∈ 𝐴 ) |
37 |
|
eqid |
⊢ ( 𝑋 ⊕ 𝑝 ) = ( 𝑋 ⊕ 𝑝 ) |
38 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → 𝑋 ≠ { 0 } ) |
39 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
40 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
41 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem6 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ⊕ 𝑝 ) = 𝑋 ) |
42 |
1 2 3 4 5 6 7 8 34 35 36 11 37 38 39 40
|
dochexmidlem7 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 ⊕ 𝑝 ) ≠ 𝑋 ) |
43 |
41 42
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) |
44 |
43
|
3adant3l |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) |
45 |
44
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑉 ∧ ¬ 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
46 |
33 45
|
syld |
⊢ ( 𝜑 → ( ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ⊆ 𝑉 ∧ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 ) → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
47 |
23 46
|
mpand |
⊢ ( 𝜑 → ( ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑉 → ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) ) ) |
48 |
47
|
necon1bd |
⊢ ( 𝜑 → ( ¬ ( 𝑋 = 𝑋 ∧ 𝑋 ≠ 𝑋 ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) ) |
49 |
14 48
|
mpi |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |