Metamath Proof Explorer


Theorem dochexmidlem3

Description: Lemma for dochexmid . Use atom exchange lsatexch1 to swap p and q . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem3.pp φpA
dochexmidlem3.qq φqA
dochexmidlem3.rr φrA
dochexmidlem3.ql φq˙X
dochexmidlem3.rl φrX
dochexmidlem3.pl φqr˙p
Assertion dochexmidlem3 φpX˙˙X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem3.pp φpA
12 dochexmidlem3.qq φqA
13 dochexmidlem3.rr φrA
14 dochexmidlem3.ql φq˙X
15 dochexmidlem3.rl φrX
16 dochexmidlem3.pl φqr˙p
17 1 3 9 dvhlvec φULVec
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dochexmidlem1 φqr
19 7 8 17 12 11 13 16 18 lsatexch1 φpr˙q
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 dochexmidlem2 φpX˙˙X