| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem1.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
| 12 |
|
dochexmidlem1.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
| 13 |
|
dochexmidlem1.rr |
⊢ ( 𝜑 → 𝑟 ∈ 𝐴 ) |
| 14 |
|
dochexmidlem1.ql |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 15 |
|
dochexmidlem1.rl |
⊢ ( 𝜑 → 𝑟 ⊆ 𝑋 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 18 |
16 8 17 13
|
lsatn0 |
⊢ ( 𝜑 → 𝑟 ≠ { ( 0g ‘ 𝑈 ) } ) |
| 19 |
5 8 17 13
|
lsatlssel |
⊢ ( 𝜑 → 𝑟 ∈ 𝑆 ) |
| 20 |
16 5
|
lssle0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑟 ∈ 𝑆 ) → ( 𝑟 ⊆ { ( 0g ‘ 𝑈 ) } ↔ 𝑟 = { ( 0g ‘ 𝑈 ) } ) ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑟 ⊆ { ( 0g ‘ 𝑈 ) } ↔ 𝑟 = { ( 0g ‘ 𝑈 ) } ) ) |
| 22 |
21
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑟 ⊆ { ( 0g ‘ 𝑈 ) } ↔ 𝑟 ≠ { ( 0g ‘ 𝑈 ) } ) ) |
| 23 |
18 22
|
mpbird |
⊢ ( 𝜑 → ¬ 𝑟 ⊆ { ( 0g ‘ 𝑈 ) } ) |
| 24 |
1 3 5 16 2
|
dochnoncon |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = { ( 0g ‘ 𝑈 ) } ) |
| 25 |
9 10 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = { ( 0g ‘ 𝑈 ) } ) |
| 26 |
25
|
sseq2d |
⊢ ( 𝜑 → ( 𝑟 ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ↔ 𝑟 ⊆ { ( 0g ‘ 𝑈 ) } ) ) |
| 27 |
23 26
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑟 ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 28 |
|
sseq1 |
⊢ ( 𝑞 = 𝑟 → ( 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ↔ 𝑟 ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 29 |
14 28
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑞 = 𝑟 → 𝑟 ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
| 30 |
29 15
|
jctild |
⊢ ( 𝜑 → ( 𝑞 = 𝑟 → ( 𝑟 ⊆ 𝑋 ∧ 𝑟 ⊆ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 31 |
|
ssin |
⊢ ( ( 𝑟 ⊆ 𝑋 ∧ 𝑟 ⊆ ( ⊥ ‘ 𝑋 ) ) ↔ 𝑟 ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 32 |
30 31
|
imbitrdi |
⊢ ( 𝜑 → ( 𝑞 = 𝑟 → 𝑟 ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 33 |
32
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝑟 ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) → 𝑞 ≠ 𝑟 ) ) |
| 34 |
27 33
|
mpd |
⊢ ( 𝜑 → 𝑞 ≠ 𝑟 ) |