Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidlem1.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidlem1.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmidlem1.n |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidlem1.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidlem1.a |
|- A = ( LSAtoms ` U ) |
9 |
|
dochexmidlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dochexmidlem1.x |
|- ( ph -> X e. S ) |
11 |
|
dochexmidlem1.pp |
|- ( ph -> p e. A ) |
12 |
|
dochexmidlem1.qq |
|- ( ph -> q e. A ) |
13 |
|
dochexmidlem1.rr |
|- ( ph -> r e. A ) |
14 |
|
dochexmidlem1.ql |
|- ( ph -> q C_ ( ._|_ ` X ) ) |
15 |
|
dochexmidlem1.rl |
|- ( ph -> r C_ X ) |
16 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
17 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
16 8 17 13
|
lsatn0 |
|- ( ph -> r =/= { ( 0g ` U ) } ) |
19 |
5 8 17 13
|
lsatlssel |
|- ( ph -> r e. S ) |
20 |
16 5
|
lssle0 |
|- ( ( U e. LMod /\ r e. S ) -> ( r C_ { ( 0g ` U ) } <-> r = { ( 0g ` U ) } ) ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> ( r C_ { ( 0g ` U ) } <-> r = { ( 0g ` U ) } ) ) |
22 |
21
|
necon3bbid |
|- ( ph -> ( -. r C_ { ( 0g ` U ) } <-> r =/= { ( 0g ` U ) } ) ) |
23 |
18 22
|
mpbird |
|- ( ph -> -. r C_ { ( 0g ` U ) } ) |
24 |
1 3 5 16 2
|
dochnoncon |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( X i^i ( ._|_ ` X ) ) = { ( 0g ` U ) } ) |
25 |
9 10 24
|
syl2anc |
|- ( ph -> ( X i^i ( ._|_ ` X ) ) = { ( 0g ` U ) } ) |
26 |
25
|
sseq2d |
|- ( ph -> ( r C_ ( X i^i ( ._|_ ` X ) ) <-> r C_ { ( 0g ` U ) } ) ) |
27 |
23 26
|
mtbird |
|- ( ph -> -. r C_ ( X i^i ( ._|_ ` X ) ) ) |
28 |
|
sseq1 |
|- ( q = r -> ( q C_ ( ._|_ ` X ) <-> r C_ ( ._|_ ` X ) ) ) |
29 |
14 28
|
syl5ibcom |
|- ( ph -> ( q = r -> r C_ ( ._|_ ` X ) ) ) |
30 |
29 15
|
jctild |
|- ( ph -> ( q = r -> ( r C_ X /\ r C_ ( ._|_ ` X ) ) ) ) |
31 |
|
ssin |
|- ( ( r C_ X /\ r C_ ( ._|_ ` X ) ) <-> r C_ ( X i^i ( ._|_ ` X ) ) ) |
32 |
30 31
|
syl6ib |
|- ( ph -> ( q = r -> r C_ ( X i^i ( ._|_ ` X ) ) ) ) |
33 |
32
|
necon3bd |
|- ( ph -> ( -. r C_ ( X i^i ( ._|_ ` X ) ) -> q =/= r ) ) |
34 |
27 33
|
mpd |
|- ( ph -> q =/= r ) |