Metamath Proof Explorer


Theorem lsatexch1

Description: The atom exch1ange property. ( hlatexch1 analog.) (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses lsatexch1.p = ( LSSum ‘ 𝑊 )
lsatexch1.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatexch1.w ( 𝜑𝑊 ∈ LVec )
lsatexch1.u ( 𝜑𝑄𝐴 )
lsatexch1.q ( 𝜑𝑅𝐴 )
lsatexch1.r ( 𝜑𝑆𝐴 )
lsatexch1.l ( 𝜑𝑄 ⊆ ( 𝑆 𝑅 ) )
lsatexch1.z ( 𝜑𝑄𝑆 )
Assertion lsatexch1 ( 𝜑𝑅 ⊆ ( 𝑆 𝑄 ) )

Proof

Step Hyp Ref Expression
1 lsatexch1.p = ( LSSum ‘ 𝑊 )
2 lsatexch1.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 lsatexch1.w ( 𝜑𝑊 ∈ LVec )
4 lsatexch1.u ( 𝜑𝑄𝐴 )
5 lsatexch1.q ( 𝜑𝑅𝐴 )
6 lsatexch1.r ( 𝜑𝑆𝐴 )
7 lsatexch1.l ( 𝜑𝑄 ⊆ ( 𝑆 𝑅 ) )
8 lsatexch1.z ( 𝜑𝑄𝑆 )
9 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
10 eqid ( 0g𝑊 ) = ( 0g𝑊 )
11 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
12 3 11 syl ( 𝜑𝑊 ∈ LMod )
13 9 2 12 6 lsatlssel ( 𝜑𝑆 ∈ ( LSubSp ‘ 𝑊 ) )
14 8 necomd ( 𝜑𝑆𝑄 )
15 10 2 3 6 4 lsatnem0 ( 𝜑 → ( 𝑆𝑄 ↔ ( 𝑆𝑄 ) = { ( 0g𝑊 ) } ) )
16 14 15 mpbid ( 𝜑 → ( 𝑆𝑄 ) = { ( 0g𝑊 ) } )
17 9 1 10 2 3 13 4 5 7 16 lsatexch ( 𝜑𝑅 ⊆ ( 𝑆 𝑄 ) )