| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatexch1.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 2 |
|
lsatexch1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 3 |
|
lsatexch1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 4 |
|
lsatexch1.u |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 5 |
|
lsatexch1.q |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 6 |
|
lsatexch1.r |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 7 |
|
lsatexch1.l |
⊢ ( 𝜑 → 𝑄 ⊆ ( 𝑆 ⊕ 𝑅 ) ) |
| 8 |
|
lsatexch1.z |
⊢ ( 𝜑 → 𝑄 ≠ 𝑆 ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 11 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 |
9 2 12 6
|
lsatlssel |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 |
8
|
necomd |
⊢ ( 𝜑 → 𝑆 ≠ 𝑄 ) |
| 15 |
10 2 3 6 4
|
lsatnem0 |
⊢ ( 𝜑 → ( 𝑆 ≠ 𝑄 ↔ ( 𝑆 ∩ 𝑄 ) = { ( 0g ‘ 𝑊 ) } ) ) |
| 16 |
14 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑄 ) = { ( 0g ‘ 𝑊 ) } ) |
| 17 |
9 1 10 2 3 13 4 5 7 16
|
lsatexch |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑆 ⊕ 𝑄 ) ) |