Metamath Proof Explorer


Theorem lsatnem0

Description: The meet of distinct atoms is the zero subspace. ( atnemeq0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnem0.o 0 = ( 0g𝑊 )
lsatnem0.a 𝐴 = ( LSAtoms ‘ 𝑊 )
lsatnem0.w ( 𝜑𝑊 ∈ LVec )
lsatnem0.q ( 𝜑𝑄𝐴 )
lsatnem0.r ( 𝜑𝑅𝐴 )
Assertion lsatnem0 ( 𝜑 → ( 𝑄𝑅 ↔ ( 𝑄𝑅 ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 lsatnem0.o 0 = ( 0g𝑊 )
2 lsatnem0.a 𝐴 = ( LSAtoms ‘ 𝑊 )
3 lsatnem0.w ( 𝜑𝑊 ∈ LVec )
4 lsatnem0.q ( 𝜑𝑄𝐴 )
5 lsatnem0.r ( 𝜑𝑅𝐴 )
6 2 3 5 4 lsatcmp ( 𝜑 → ( 𝑅𝑄𝑅 = 𝑄 ) )
7 eqcom ( 𝑅 = 𝑄𝑄 = 𝑅 )
8 6 7 bitrdi ( 𝜑 → ( 𝑅𝑄𝑄 = 𝑅 ) )
9 8 necon3bbid ( 𝜑 → ( ¬ 𝑅𝑄𝑄𝑅 ) )
10 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
11 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
12 3 11 syl ( 𝜑𝑊 ∈ LMod )
13 10 2 12 4 lsatlssel ( 𝜑𝑄 ∈ ( LSubSp ‘ 𝑊 ) )
14 1 10 2 3 13 5 lsatnle ( 𝜑 → ( ¬ 𝑅𝑄 ↔ ( 𝑄𝑅 ) = { 0 } ) )
15 9 14 bitr3d ( 𝜑 → ( 𝑄𝑅 ↔ ( 𝑄𝑅 ) = { 0 } ) )