Step |
Hyp |
Ref |
Expression |
1 |
|
lsatnem0.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
2 |
|
lsatnem0.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
3 |
|
lsatnem0.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
4 |
|
lsatnem0.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
5 |
|
lsatnem0.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
6 |
2 3 5 4
|
lsatcmp |
⊢ ( 𝜑 → ( 𝑅 ⊆ 𝑄 ↔ 𝑅 = 𝑄 ) ) |
7 |
|
eqcom |
⊢ ( 𝑅 = 𝑄 ↔ 𝑄 = 𝑅 ) |
8 |
6 7
|
bitrdi |
⊢ ( 𝜑 → ( 𝑅 ⊆ 𝑄 ↔ 𝑄 = 𝑅 ) ) |
9 |
8
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 𝑅 ⊆ 𝑄 ↔ 𝑄 ≠ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
11 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
13 |
10 2 12 4
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑊 ) ) |
14 |
1 10 2 3 13 5
|
lsatnle |
⊢ ( 𝜑 → ( ¬ 𝑅 ⊆ 𝑄 ↔ ( 𝑄 ∩ 𝑅 ) = { 0 } ) ) |
15 |
9 14
|
bitr3d |
⊢ ( 𝜑 → ( 𝑄 ≠ 𝑅 ↔ ( 𝑄 ∩ 𝑅 ) = { 0 } ) ) |