Metamath Proof Explorer


Theorem lsatnem0

Description: The meet of distinct atoms is the zero subspace. ( atnemeq0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnem0.o
|- .0. = ( 0g ` W )
lsatnem0.a
|- A = ( LSAtoms ` W )
lsatnem0.w
|- ( ph -> W e. LVec )
lsatnem0.q
|- ( ph -> Q e. A )
lsatnem0.r
|- ( ph -> R e. A )
Assertion lsatnem0
|- ( ph -> ( Q =/= R <-> ( Q i^i R ) = { .0. } ) )

Proof

Step Hyp Ref Expression
1 lsatnem0.o
 |-  .0. = ( 0g ` W )
2 lsatnem0.a
 |-  A = ( LSAtoms ` W )
3 lsatnem0.w
 |-  ( ph -> W e. LVec )
4 lsatnem0.q
 |-  ( ph -> Q e. A )
5 lsatnem0.r
 |-  ( ph -> R e. A )
6 2 3 5 4 lsatcmp
 |-  ( ph -> ( R C_ Q <-> R = Q ) )
7 eqcom
 |-  ( R = Q <-> Q = R )
8 6 7 bitrdi
 |-  ( ph -> ( R C_ Q <-> Q = R ) )
9 8 necon3bbid
 |-  ( ph -> ( -. R C_ Q <-> Q =/= R ) )
10 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
11 lveclmod
 |-  ( W e. LVec -> W e. LMod )
12 3 11 syl
 |-  ( ph -> W e. LMod )
13 10 2 12 4 lsatlssel
 |-  ( ph -> Q e. ( LSubSp ` W ) )
14 1 10 2 3 13 5 lsatnle
 |-  ( ph -> ( -. R C_ Q <-> ( Q i^i R ) = { .0. } ) )
15 9 14 bitr3d
 |-  ( ph -> ( Q =/= R <-> ( Q i^i R ) = { .0. } ) )