Metamath Proof Explorer


Theorem lsatnem0

Description: The meet of distinct atoms is the zero subspace. ( atnemeq0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnem0.o 0 ˙ = 0 W
lsatnem0.a A = LSAtoms W
lsatnem0.w φ W LVec
lsatnem0.q φ Q A
lsatnem0.r φ R A
Assertion lsatnem0 φ Q R Q R = 0 ˙

Proof

Step Hyp Ref Expression
1 lsatnem0.o 0 ˙ = 0 W
2 lsatnem0.a A = LSAtoms W
3 lsatnem0.w φ W LVec
4 lsatnem0.q φ Q A
5 lsatnem0.r φ R A
6 2 3 5 4 lsatcmp φ R Q R = Q
7 eqcom R = Q Q = R
8 6 7 bitrdi φ R Q Q = R
9 8 necon3bbid φ ¬ R Q Q R
10 eqid LSubSp W = LSubSp W
11 lveclmod W LVec W LMod
12 3 11 syl φ W LMod
13 10 2 12 4 lsatlssel φ Q LSubSp W
14 1 10 2 3 13 5 lsatnle φ ¬ R Q Q R = 0 ˙
15 9 14 bitr3d φ Q R Q R = 0 ˙