Metamath Proof Explorer


Theorem lsatnle

Description: The meet of a subspace and an incomparable atom is the zero subspace. ( atnssm0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnle.o 0˙=0W
lsatnle.s S=LSubSpW
lsatnle.a A=LSAtomsW
lsatnle.w φWLVec
lsatnle.u φUS
lsatnle.q φQA
Assertion lsatnle φ¬QUUQ=0˙

Proof

Step Hyp Ref Expression
1 lsatnle.o 0˙=0W
2 lsatnle.s S=LSubSpW
3 lsatnle.a A=LSAtomsW
4 lsatnle.w φWLVec
5 lsatnle.u φUS
6 lsatnle.q φQA
7 eqid LSSumW=LSSumW
8 eqid LW=LW
9 2 7 3 8 4 5 6 lcv1 φ¬QUULWULSSumWQ
10 2 7 1 3 8 4 5 6 lcvp φUQ=0˙ULWULSSumWQ
11 9 10 bitr4d φ¬QUUQ=0˙