Metamath Proof Explorer


Theorem lsatnle

Description: The meet of a subspace and an incomparable atom is the zero subspace. ( atnssm0 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatnle.o 0 ˙ = 0 W
lsatnle.s S = LSubSp W
lsatnle.a A = LSAtoms W
lsatnle.w φ W LVec
lsatnle.u φ U S
lsatnle.q φ Q A
Assertion lsatnle φ ¬ Q U U Q = 0 ˙

Proof

Step Hyp Ref Expression
1 lsatnle.o 0 ˙ = 0 W
2 lsatnle.s S = LSubSp W
3 lsatnle.a A = LSAtoms W
4 lsatnle.w φ W LVec
5 lsatnle.u φ U S
6 lsatnle.q φ Q A
7 eqid LSSum W = LSSum W
8 eqid L W = L W
9 2 7 3 8 4 5 6 lcv1 φ ¬ Q U U L W U LSSum W Q
10 2 7 1 3 8 4 5 6 lcvp φ U Q = 0 ˙ U L W U LSSum W Q
11 9 10 bitr4d φ ¬ Q U U Q = 0 ˙