Step |
Hyp |
Ref |
Expression |
1 |
|
lcv1.s |
|
2 |
|
lcv1.p |
|
3 |
|
lcv1.a |
|
4 |
|
lcv1.c |
|
5 |
|
lcv1.w |
|
6 |
|
lcv1.u |
|
7 |
|
lcv1.q |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
8 9 10 3
|
islsat |
|
12 |
5 11
|
syl |
|
13 |
7 12
|
mpbid |
|
14 |
13
|
adantr |
|
15 |
5
|
adantr |
|
16 |
15
|
3ad2ant1 |
|
17 |
6
|
adantr |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
eldifi |
|
20 |
19
|
3ad2ant2 |
|
21 |
|
simp1r |
|
22 |
|
simp3 |
|
23 |
22
|
sseq1d |
|
24 |
21 23
|
mtbid |
|
25 |
8 1 9 2 4 16 18 20 24
|
lsmcv2 |
|
26 |
22
|
oveq2d |
|
27 |
25 26
|
breqtrrd |
|
28 |
27
|
rexlimdv3a |
|
29 |
14 28
|
mpd |
|
30 |
5
|
adantr |
|
31 |
6
|
adantr |
|
32 |
|
lveclmod |
|
33 |
5 32
|
syl |
|
34 |
1 3 33 7
|
lsatlssel |
|
35 |
1 2
|
lsmcl |
|
36 |
33 6 34 35
|
syl3anc |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
1 4 30 31 37 38
|
lcvpss |
|
40 |
1
|
lsssssubg |
|
41 |
33 40
|
syl |
|
42 |
41 6
|
sseldd |
|
43 |
41 34
|
sseldd |
|
44 |
2 42 43
|
lssnle |
|
45 |
44
|
adantr |
|
46 |
39 45
|
mpbird |
|
47 |
29 46
|
impbida |
|