Metamath Proof Explorer


Theorem lsmcv2

Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of Kalmbach p. 153. ( spansncv2 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsmcv2.v V = Base W
lsmcv2.s S = LSubSp W
lsmcv2.n N = LSpan W
lsmcv2.p ˙ = LSSum W
lsmcv2.c C = L W
lsmcv2.w φ W LVec
lsmcv2.u φ U S
lsmcv2.x φ X V
lsmcv2.l φ ¬ N X U
Assertion lsmcv2 φ U C U ˙ N X

Proof

Step Hyp Ref Expression
1 lsmcv2.v V = Base W
2 lsmcv2.s S = LSubSp W
3 lsmcv2.n N = LSpan W
4 lsmcv2.p ˙ = LSSum W
5 lsmcv2.c C = L W
6 lsmcv2.w φ W LVec
7 lsmcv2.u φ U S
8 lsmcv2.x φ X V
9 lsmcv2.l φ ¬ N X U
10 lveclmod W LVec W LMod
11 6 10 syl φ W LMod
12 2 lsssssubg W LMod S SubGrp W
13 11 12 syl φ S SubGrp W
14 13 7 sseldd φ U SubGrp W
15 1 2 3 lspsncl W LMod X V N X S
16 11 8 15 syl2anc φ N X S
17 13 16 sseldd φ N X SubGrp W
18 4 14 17 lssnle φ ¬ N X U U U ˙ N X
19 9 18 mpbid φ U U ˙ N X
20 3simpa φ x S U x x U ˙ N X φ x S
21 simp3l φ x S U x x U ˙ N X U x
22 simp3r φ x S U x x U ˙ N X x U ˙ N X
23 6 adantr φ x S W LVec
24 7 adantr φ x S U S
25 simpr φ x S x S
26 8 adantr φ x S X V
27 1 2 3 4 23 24 25 26 lsmcv φ x S U x x U ˙ N X x = U ˙ N X
28 20 21 22 27 syl3anc φ x S U x x U ˙ N X x = U ˙ N X
29 28 3exp φ x S U x x U ˙ N X x = U ˙ N X
30 29 ralrimiv φ x S U x x U ˙ N X x = U ˙ N X
31 2 4 lsmcl W LMod U S N X S U ˙ N X S
32 11 7 16 31 syl3anc φ U ˙ N X S
33 2 5 6 7 32 lcvbr2 φ U C U ˙ N X U U ˙ N X x S U x x U ˙ N X x = U ˙ N X
34 19 30 33 mpbir2and φ U C U ˙ N X