Metamath Proof Explorer


Theorem lcvat

Description: If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. ( cvati analog.) (Contributed by NM, 11-Jan-2015)

Ref Expression
Hypotheses lcvat.s S=LSubSpW
lcvat.p ˙=LSSumW
lcvat.a A=LSAtomsW
icvat.c C=LW
lcvat.w φWLMod
lcvat.t φTS
lcvat.u φUS
lcvat.l φTCU
Assertion lcvat φqAT˙q=U

Proof

Step Hyp Ref Expression
1 lcvat.s S=LSubSpW
2 lcvat.p ˙=LSSumW
3 lcvat.a A=LSAtomsW
4 icvat.c C=LW
5 lcvat.w φWLMod
6 lcvat.t φTS
7 lcvat.u φUS
8 lcvat.l φTCU
9 1 4 5 6 7 8 lcvpss φTU
10 1 2 3 5 6 7 9 lrelat φqATT˙qT˙qU
11 5 3ad2ant1 φqATT˙qT˙qUWLMod
12 6 3ad2ant1 φqATT˙qT˙qUTS
13 7 3ad2ant1 φqATT˙qT˙qUUS
14 simp2 φqATT˙qT˙qUqA
15 1 3 11 14 lsatlssel φqATT˙qT˙qUqS
16 1 2 lsmcl WLModTSqST˙qS
17 11 12 15 16 syl3anc φqATT˙qT˙qUT˙qS
18 8 3ad2ant1 φqATT˙qT˙qUTCU
19 simp3l φqATT˙qT˙qUTT˙q
20 simp3r φqATT˙qT˙qUT˙qU
21 1 4 11 12 13 17 18 19 20 lcvnbtwn2 φqATT˙qT˙qUT˙q=U
22 21 3exp φqATT˙qT˙qUT˙q=U
23 22 reximdvai φqATT˙qT˙qUqAT˙q=U
24 10 23 mpd φqAT˙q=U