Metamath Proof Explorer


Theorem cvati

Description: If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion cvati A B x HAtoms A x = B

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 cvpss A C B C A B A B
4 1 2 3 mp2an A B A B
5 1 2 chrelati A B x HAtoms A A x A x B
6 4 5 syl A B x HAtoms A A x A x B
7 cvnbtwn2 A C B C A x C A B A A x A x B A x = B
8 1 2 7 mp3an12 A x C A B A A x A x B A x = B
9 atelch x HAtoms x C
10 chjcl A C x C A x C
11 1 9 10 sylancr x HAtoms A x C
12 8 11 syl11 A B x HAtoms A A x A x B A x = B
13 12 reximdvai A B x HAtoms A A x A x B x HAtoms A x = B
14 6 13 mpd A B x HAtoms A x = B