Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
chpssat.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
cvpss |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵 ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵 ) |
5 |
1 2
|
chrelati |
⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ⋖ℋ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |
7 |
|
cvnbtwn2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝑥 ) ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) ) |
8 |
1 2 7
|
mp3an12 |
⊢ ( ( 𝐴 ∨ℋ 𝑥 ) ∈ Cℋ → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) ) |
9 |
|
atelch |
⊢ ( 𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) |
10 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝑥 ) ∈ Cℋ ) |
11 |
1 9 10
|
sylancr |
⊢ ( 𝑥 ∈ HAtoms → ( 𝐴 ∨ℋ 𝑥 ) ∈ Cℋ ) |
12 |
8 11
|
syl11 |
⊢ ( 𝐴 ⋖ℋ 𝐵 → ( 𝑥 ∈ HAtoms → ( ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) ) |
13 |
12
|
reximdvai |
⊢ ( 𝐴 ⋖ℋ 𝐵 → ( ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |
14 |
6 13
|
mpd |
⊢ ( 𝐴 ⋖ℋ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) |