Metamath Proof Explorer


Theorem cvati

Description: If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 𝐴C
chpssat.2 𝐵C
Assertion cvati ( 𝐴 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 chpssat.1 𝐴C
2 chpssat.2 𝐵C
3 cvpss ( ( 𝐴C𝐵C ) → ( 𝐴 𝐵𝐴𝐵 ) )
4 1 2 3 mp2an ( 𝐴 𝐵𝐴𝐵 )
5 1 2 chrelati ( 𝐴𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) )
6 4 5 syl ( 𝐴 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) )
7 cvnbtwn2 ( ( 𝐴C𝐵C ∧ ( 𝐴 𝑥 ) ∈ C ) → ( 𝐴 𝐵 → ( ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 𝑥 ) = 𝐵 ) ) )
8 1 2 7 mp3an12 ( ( 𝐴 𝑥 ) ∈ C → ( 𝐴 𝐵 → ( ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 𝑥 ) = 𝐵 ) ) )
9 atelch ( 𝑥 ∈ HAtoms → 𝑥C )
10 chjcl ( ( 𝐴C𝑥C ) → ( 𝐴 𝑥 ) ∈ C )
11 1 9 10 sylancr ( 𝑥 ∈ HAtoms → ( 𝐴 𝑥 ) ∈ C )
12 8 11 syl11 ( 𝐴 𝐵 → ( 𝑥 ∈ HAtoms → ( ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) → ( 𝐴 𝑥 ) = 𝐵 ) ) )
13 12 reximdvai ( 𝐴 𝐵 → ( ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 𝑥 ) ∧ ( 𝐴 𝑥 ) ⊆ 𝐵 ) → ∃ 𝑥 ∈ HAtoms ( 𝐴 𝑥 ) = 𝐵 ) )
14 6 13 mpd ( 𝐴 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 𝑥 ) = 𝐵 )