Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
|
cvpss |
|- ( ( A e. CH /\ B e. CH ) -> ( A A C. B ) ) |
4 |
1 2 3
|
mp2an |
|- ( A A C. B ) |
5 |
1 2
|
chrelati |
|- ( A C. B -> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) |
6 |
4 5
|
syl |
|- ( A E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) |
7 |
|
cvnbtwn2 |
|- ( ( A e. CH /\ B e. CH /\ ( A vH x ) e. CH ) -> ( A ( ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) -> ( A vH x ) = B ) ) ) |
8 |
1 2 7
|
mp3an12 |
|- ( ( A vH x ) e. CH -> ( A ( ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) -> ( A vH x ) = B ) ) ) |
9 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
10 |
|
chjcl |
|- ( ( A e. CH /\ x e. CH ) -> ( A vH x ) e. CH ) |
11 |
1 9 10
|
sylancr |
|- ( x e. HAtoms -> ( A vH x ) e. CH ) |
12 |
8 11
|
syl11 |
|- ( A ( x e. HAtoms -> ( ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) -> ( A vH x ) = B ) ) ) |
13 |
12
|
reximdvai |
|- ( A ( E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) -> E. x e. HAtoms ( A vH x ) = B ) ) |
14 |
6 13
|
mpd |
|- ( A E. x e. HAtoms ( A vH x ) = B ) |