Metamath Proof Explorer


Theorem cvbr4i

Description: An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1
|- A e. CH
chpssat.2
|- B e. CH
Assertion cvbr4i
|- ( A  ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) )

Proof

Step Hyp Ref Expression
1 chpssat.1
 |-  A e. CH
2 chpssat.2
 |-  B e. CH
3 cvpss
 |-  ( ( A e. CH /\ B e. CH ) -> ( A  A C. B ) )
4 1 2 3 mp2an
 |-  ( A  A C. B )
5 1 2 cvati
 |-  ( A  E. x e. HAtoms ( A vH x ) = B )
6 4 5 jca
 |-  ( A  ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) )
7 chcv2
 |-  ( ( A e. CH /\ x e. HAtoms ) -> ( A C. ( A vH x ) <-> A 
8 1 7 mpan
 |-  ( x e. HAtoms -> ( A C. ( A vH x ) <-> A 
9 8 adantr
 |-  ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. ( A vH x ) <-> A 
10 psseq2
 |-  ( ( A vH x ) = B -> ( A C. ( A vH x ) <-> A C. B ) )
11 10 adantl
 |-  ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. ( A vH x ) <-> A C. B ) )
12 breq2
 |-  ( ( A vH x ) = B -> ( A  A 
13 12 adantl
 |-  ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A  A 
14 9 11 13 3bitr3d
 |-  ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. B <-> A 
15 14 biimpd
 |-  ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. B -> A 
16 15 ex
 |-  ( x e. HAtoms -> ( ( A vH x ) = B -> ( A C. B -> A 
17 16 com3r
 |-  ( A C. B -> ( x e. HAtoms -> ( ( A vH x ) = B -> A 
18 17 rexlimdv
 |-  ( A C. B -> ( E. x e. HAtoms ( A vH x ) = B -> A 
19 18 imp
 |-  ( ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) -> A 
20 6 19 impbii
 |-  ( A  ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) )