Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
|
cvpss |
|- ( ( A e. CH /\ B e. CH ) -> ( A A C. B ) ) |
4 |
1 2 3
|
mp2an |
|- ( A A C. B ) |
5 |
1 2
|
cvati |
|- ( A E. x e. HAtoms ( A vH x ) = B ) |
6 |
4 5
|
jca |
|- ( A ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) ) |
7 |
|
chcv2 |
|- ( ( A e. CH /\ x e. HAtoms ) -> ( A C. ( A vH x ) <-> A |
8 |
1 7
|
mpan |
|- ( x e. HAtoms -> ( A C. ( A vH x ) <-> A |
9 |
8
|
adantr |
|- ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. ( A vH x ) <-> A |
10 |
|
psseq2 |
|- ( ( A vH x ) = B -> ( A C. ( A vH x ) <-> A C. B ) ) |
11 |
10
|
adantl |
|- ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. ( A vH x ) <-> A C. B ) ) |
12 |
|
breq2 |
|- ( ( A vH x ) = B -> ( A A |
13 |
12
|
adantl |
|- ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A A |
14 |
9 11 13
|
3bitr3d |
|- ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. B <-> A |
15 |
14
|
biimpd |
|- ( ( x e. HAtoms /\ ( A vH x ) = B ) -> ( A C. B -> A |
16 |
15
|
ex |
|- ( x e. HAtoms -> ( ( A vH x ) = B -> ( A C. B -> A |
17 |
16
|
com3r |
|- ( A C. B -> ( x e. HAtoms -> ( ( A vH x ) = B -> A |
18 |
17
|
rexlimdv |
|- ( A C. B -> ( E. x e. HAtoms ( A vH x ) = B -> A |
19 |
18
|
imp |
|- ( ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) -> A |
20 |
6 19
|
impbii |
|- ( A ( A C. B /\ E. x e. HAtoms ( A vH x ) = B ) ) |