Metamath Proof Explorer


Theorem cvbr4i

Description: An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 A C
chpssat.2 B C
Assertion cvbr4i A B A B x HAtoms A x = B

Proof

Step Hyp Ref Expression
1 chpssat.1 A C
2 chpssat.2 B C
3 cvpss A C B C A B A B
4 1 2 3 mp2an A B A B
5 1 2 cvati A B x HAtoms A x = B
6 4 5 jca A B A B x HAtoms A x = B
7 chcv2 A C x HAtoms A A x A A x
8 1 7 mpan x HAtoms A A x A A x
9 8 adantr x HAtoms A x = B A A x A A x
10 psseq2 A x = B A A x A B
11 10 adantl x HAtoms A x = B A A x A B
12 breq2 A x = B A A x A B
13 12 adantl x HAtoms A x = B A A x A B
14 9 11 13 3bitr3d x HAtoms A x = B A B A B
15 14 biimpd x HAtoms A x = B A B A B
16 15 ex x HAtoms A x = B A B A B
17 16 com3r A B x HAtoms A x = B A B
18 17 rexlimdv A B x HAtoms A x = B A B
19 18 imp A B x HAtoms A x = B A B
20 6 19 impbii A B A B x HAtoms A x = B