Metamath Proof Explorer


Theorem cvbr4i

Description: An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion cvbr4i ABABxHAtomsAx=B

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 cvpss ACBCABAB
4 1 2 3 mp2an ABAB
5 1 2 cvati ABxHAtomsAx=B
6 4 5 jca ABABxHAtomsAx=B
7 chcv2 ACxHAtomsAAxAAx
8 1 7 mpan xHAtomsAAxAAx
9 8 adantr xHAtomsAx=BAAxAAx
10 psseq2 Ax=BAAxAB
11 10 adantl xHAtomsAx=BAAxAB
12 breq2 Ax=BAAxAB
13 12 adantl xHAtomsAx=BAAxAB
14 9 11 13 3bitr3d xHAtomsAx=BABAB
15 14 biimpd xHAtomsAx=BABAB
16 15 ex xHAtomsAx=BABAB
17 16 com3r ABxHAtomsAx=BAB
18 17 rexlimdv ABxHAtomsAx=BAB
19 18 imp ABxHAtomsAx=BAB
20 6 19 impbii ABABxHAtomsAx=B