Metamath Proof Explorer


Theorem lsatcv0

Description: An atom covers the zero subspace. ( atcv0 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lsatcv0.o 0 ˙ = 0 W
lsatcv0.a A = LSAtoms W
lsatcv0.c C = L W
lsatcv0.w φ W LVec
lsatcv0.q φ Q A
Assertion lsatcv0 φ 0 ˙ C Q

Proof

Step Hyp Ref Expression
1 lsatcv0.o 0 ˙ = 0 W
2 lsatcv0.a A = LSAtoms W
3 lsatcv0.c C = L W
4 lsatcv0.w φ W LVec
5 lsatcv0.q φ Q A
6 lveclmod W LVec W LMod
7 4 6 syl φ W LMod
8 eqid LSubSp W = LSubSp W
9 8 2 7 5 lsatlssel φ Q LSubSp W
10 1 8 lss0ss W LMod Q LSubSp W 0 ˙ Q
11 7 9 10 syl2anc φ 0 ˙ Q
12 1 2 7 5 lsatn0 φ Q 0 ˙
13 12 necomd φ 0 ˙ Q
14 df-pss 0 ˙ Q 0 ˙ Q 0 ˙ Q
15 11 13 14 sylanbrc φ 0 ˙ Q
16 eqid Base W = Base W
17 eqid LSpan W = LSpan W
18 16 17 1 2 islsat W LMod Q A x Base W 0 ˙ Q = LSpan W x
19 7 18 syl φ Q A x Base W 0 ˙ Q = LSpan W x
20 5 19 mpbid φ x Base W 0 ˙ Q = LSpan W x
21 4 adantr φ x Base W 0 ˙ W LVec
22 eldifi x Base W 0 ˙ x Base W
23 22 adantl φ x Base W 0 ˙ x Base W
24 16 1 8 17 21 23 lspsncv0 φ x Base W 0 ˙ ¬ s LSubSp W 0 ˙ s s LSpan W x
25 24 ex φ x Base W 0 ˙ ¬ s LSubSp W 0 ˙ s s LSpan W x
26 psseq2 Q = LSpan W x s Q s LSpan W x
27 26 anbi2d Q = LSpan W x 0 ˙ s s Q 0 ˙ s s LSpan W x
28 27 rexbidv Q = LSpan W x s LSubSp W 0 ˙ s s Q s LSubSp W 0 ˙ s s LSpan W x
29 28 notbid Q = LSpan W x ¬ s LSubSp W 0 ˙ s s Q ¬ s LSubSp W 0 ˙ s s LSpan W x
30 29 biimprcd ¬ s LSubSp W 0 ˙ s s LSpan W x Q = LSpan W x ¬ s LSubSp W 0 ˙ s s Q
31 25 30 syl6 φ x Base W 0 ˙ Q = LSpan W x ¬ s LSubSp W 0 ˙ s s Q
32 31 rexlimdv φ x Base W 0 ˙ Q = LSpan W x ¬ s LSubSp W 0 ˙ s s Q
33 20 32 mpd φ ¬ s LSubSp W 0 ˙ s s Q
34 1 8 lsssn0 W LMod 0 ˙ LSubSp W
35 7 34 syl φ 0 ˙ LSubSp W
36 8 3 4 35 9 lcvbr φ 0 ˙ C Q 0 ˙ Q ¬ s LSubSp W 0 ˙ s s Q
37 15 33 36 mpbir2and φ 0 ˙ C Q